Name: \qquad Student ID:

1) In terms of a sequence of transforms (translate, rotateX, rotate Y, rotateZ), give the view transform from world space to camera space corresponding to a camera at world space point $(2,5,0)$ and looking straight at world space point $(10,5,0)$.

$$
x_{\mathrm{cam}}=\operatorname{Rotate\mathrm {Y}}\left(90^{\circ}\right) \cdot \operatorname{Translate}(-2,-5,0) \cdot x_{\mathrm{Ws}}
$$

2) What are homogeneous (4D) coordinates, and how can you convert back and forth with regular 3D coordinates for a point?

Homogeneous coordinates are an extension of regular coordinates with the addition of an extra dimension, allowing more convenient transforms.

To go from regular $3 D$ coordinates (x, y, z) for a point, add a fourth coordinate 1:

$$
(x, y, z) \rightarrow(x, y, z, 1)
$$

To go from homogeneous coordinates back to regular 3D, divide by the fourth coordinate:

$$
(x, y, z, w) \rightarrow(x / w, y / w, z / w)
$$

3) Why do homogeneous coordinates make translation transforms more convenient? Make sure to include a matrix in your explanation.

They allow translation (addition of a fixed vector) to be expressed with matrix multiplication, allowing easy composition/inversion of translation with other affine transforms. The translation of (x, y, z) by vector (a, b, c), i.e. to point $(x+a, y+b, z+c)$ can be expressed as:

$$
\left(\begin{array}{c}
x+a \\
y+b \\
z+c \\
1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & b \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right)
$$

4) Why do homogeneous coordinates make perspective transforms more convenient? Make sure to include a matrix in your explanation.
The conversion from homogeneous vectors back to regular 3D coordinates introduces a natural division; division by camera z is the crucial feature of perspective transformation, so we can bring it into the matrix composition framework:

$$
\left(\begin{array}{c}
-x / z \\
-y / z \\
-(z+1) / z
\end{array}\right) \leftarrow\left(\begin{array}{c}
x \\
y \\
z+1 \\
-z
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right)
$$

5) Sketch an example of a triangle where our rasterization algorithm is extremely inefficient.

I'm going to skip trying to draw this diagram. The best example is a very skinny triangle which doesn't contain any pixel centres, but is almost aligned with a diagonal through the entire image. The bounding box of this triangle is the entire image, but no pixels end up being set.

Name:

Student ID:

\qquad
6) Give pseudocode for the Z-Buffer algorithm.

- Set every Z-buffer entry $Z(i, j)$ to maximum depth value.
- For every triangle T :
- \quad For every pixel $P=(i, j)$ in the bounding box of T :
- If P is inside T :
- Interpolate the depth z of the fragment from triangle corners.
- If $z<Z(i, j)$:
- $\quad \operatorname{Set} Z(i, j) \leftarrow z$.
- \quad Shade the fragment and set colour of P to the fragment.

7) Give pseudocode (with formulas) for testing if 2 D point (x, y) is inside a triangle with corners $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$.

First evaluate the three edge functions:

$$
\begin{aligned}
f_{01} & =\left(y-y_{0}\right)\left(x_{1}-x_{0}\right)-\left(x-x_{0}\right)\left(y_{1}-y_{0}\right) \\
f_{12} & =\left(y-y_{1}\right)\left(x_{2}-x_{1}\right)-\left(x-x_{1}\right)\left(y_{2}-y_{1}\right) \\
f_{20} & =\left(y-y_{2}\right)\left(x_{0}-x_{2}\right)-\left(x-x_{2}\right)\left(y_{0}-y_{2}\right)
\end{aligned}
$$

- If $f_{01} \geq 0$ and $f_{12} \geq 0$ and $f_{20} \geq 0$:
- Return true.
- Else if $f_{01} \leq 0$ and $f_{12} \leq 0$ and $f_{20} \leq 0$:
- Return true.
- Else:
- Return false.

8) [Challenge] Consider the barycentric coordinate α of a point (x, y) in a triangle. In what direction does the gradient vector $\nabla \alpha=(\partial \alpha / \partial x, \partial \alpha / \partial y)$ point? Illustrate with a sketch.
No sketch in this text file, but...
The barycentric coordinate α varies linearly, thus has a constant gradient. Furthermore, α is zero all along the edge opposite to the vertex to which it's associated, i.e. the opposite edge is an isocontour. Therefore the gradient $\nabla \alpha$ is orthogonal to the opposite edge. Finally, α increases from zero on the opposite edge to one at the vertex, so the gradient must be pointing towards the vertex (and perpendicular to the opposite edge).
