Name:
Student ID: \qquad

1) In terms of a sequence of transforms (translate, rotateX, rotate Y, rotateZ), give the view transform from world space to camera space corresponding to a camera at world space point $(2,5,0)$ and looking straight at world space point $(10,5,0)$.
2) What are homogeneous (4D) coordinates, and how can you convert back and forth with regular 3D coordinates for a point?
3) Why do homogeneous coordinates make translation transforms more convenient? Make sure to include a matrix in your explanation.

Name:

Student ID:

\qquad
4) Why do homogeneous coordinates make perspective transforms more convenient? Make sure to include a matrix in your explanation.
5) Sketch an example of a triangle where our rasterization algorithm is extremely inefficient.
6) Give pseudocode for the Z-Buffer algorithm.

Name:

Student ID:

\qquad
7) Give pseudocode (with formulas) for testing if 2 D point (x, y) is inside a triangle with corners $\left(x_{0}, y_{0}\right)$, $\left(x_{1}, y_{1}\right)$, and $\left(x_{2}, y_{2}\right)$.
8) [Challenge] Consider the barycentric coordinate α of a point (x, y) in a triangle. In what direction does the gradient vector $\nabla \alpha=(\partial \alpha / \partial x, \partial \alpha / \partial y)$ point? Illustrate with a sketch.

