

Course News

Assignment 3 (project)

- Due today!!
- Demos in labs starting this Friday
- Demos are MANDATORY(!)

Reading

- Chapter 10 (ray tracing), except 10.8-10.10
- Chapter 14 (global illumination)

Rendering Equation

Equation guiding global illumination:

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int\limits_{\Omega} \rho(x,\omega_i,\omega_0) L_i(\omega_i) d\omega_i$$

 ${}^{\bullet}$ ρ is the reflectance from $\omega_{\textrm{i}}$ to $\omega_{\textrm{o}}$ at point x

 \textbf{L}_{o} is the outgoing (l.e. reflected) radiance at point x in direction ω_{i}

 $= L_e(x,\omega_o) + \int \rho(x,\omega_i,\omega_0) L_o(R(x,\omega_i),-\omega_i) d\omega_i$

- Radiance is a specific physical quantity describing the amount of light along a ray
- Radiance is constant along a ray
- $L_{\rm e}$ is the emitted radiance (=0 unless point x is on a light source)
- R is the "ray-tracing function". It describes what point is visible from x in direction ω_i

Rendering Equation

Equation guiding global illumination:

$$\begin{split} L_o(x,\omega_o) &= L_e(x,\omega_o) + \int_{\Omega} \rho(x,\omega_i,\omega_o) L_i(\omega_i) d\omega_i \\ &= L_e(x,\omega_o) + \int \rho(x,\omega_i,\omega_o) L_o(R(x,\omega_i),-\omega_i) d\omega_i \end{split}$$

Note:

- The rendering equation is an integral equation
- This equation cannot be solved directly
 - Ray-tracing function is complicated! Similar to the problem we had computing illumination from area light sources!

Monte Carlo Path Tracing

In practice:

- Do not branch at every intersection point
- This would have exponential complexity in the ray depth!
- Instead:
 - Shoot some number of primary rays through the pixel (10s-1000s, depending on scene!)
 - For each pixel and each intersection point, make a single, random decision in which direction to go next

Wolfgang Heidrich

Monte Carlo Path Tracing Trace only one secondary ray per recursion But send many primary rays per pixel (performs antialiasing as well)

How to Sample?

Simple sampling strategy:

- At every point, choose between all possible reflection directions with equal probability
- This will produce very high variance/noise if the materials are specular or glossy
- Lots of rays are required to reduce noise!

Better strategy: importance sampling

- Focus rays in areas where most of the reflected light contribution will be found
- For example: if the surface is a mirror, then only light from the mirror direction will contribute!
- Glossy materials: prefer rays near the mirror direction

Wolfgang Heidric

How to Sample? Images by Veach & Guibas Naive sampling strategy Multiple importance sampling

How to Sample?

Sampling strategies are still an active research area!

- Recent years have seen drastic advances in performance
- Lots of excellent sampling strategies have been developed in statistics and machine learning
- Many are useful for graphics

deidrich

How to Sample?

Objective:

- Compute light transport in scenes using stochastic ray tracing
 - Monte Carlo, Sequential Monte Carlo
 - Metropolis

[Burke, Ghosh, Heidrich '05] [Ghosh, Heidrich '06], [Ghosh, Doucet, Heidrich '06]

How to Sample? E.g: importance sampling (left) vs. Sequential Monte Carlo (right)

Curves **Wolfgang Heidrich**

Curves&Surfaces as **Parametric Functions**

Curves&surfaces in arbitrary dimensions

- · Curves:
- $\mathbf{x} = F(t); F : \mathbf{R} \mapsto \mathbf{R}^d$
- Surfaces:

$$\mathbf{x} = F(s,t); F : \mathbf{R}^2 \mapsto \mathbf{R}^d$$

In practice:

- Restrict to specific class of functions
 - e.g. polynomials of certain degree

$$\mathbf{x} = \sum_{i=0}^{m} \mathbf{b}_{i} t^{i} \qquad \qquad \ln 2D: \begin{pmatrix} x \\ y \end{pmatrix} = \sum_{i=0}^{m} \begin{pmatrix} b_{x,i} \\ b_{y,i} \end{pmatrix} t$$

Polynomial Curves

Advantages:

- Computationally easy to handle
 - $\mathbf{b}_0 \dots \mathbf{b}_m$ uniquely describe curve (finite storage, easy to represent)

Disadvantages:

- Not all shapes representable
- Partially fix with piecewise functions (splines)
- Still not very intuitive
 - Fix: represent polynomials in different basis
- For example: Bernstein polynomials
- This is what is called a Bézier curve

Polynomial Bases

Reminder

Vandermonde matrix

- The set of all polynomials of degree

 mover R forms a vector space with the common polynomial operations
 - What are those operations?
 - Dimension of this space is m+1
- One common basis for this space are the monomials

$$\{1, t, t^2, \dots, t^m\}$$

- Problem: the relationship between this basis and a geometric shape is quite unintuitive
- · Thus: use another basis later!

Volfgang Heidrich

Interpolation Find a polynomial y(t) such that y(t)=y₁ For 4 points t_i : need cubic polynomial $y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$ $\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = y(t)$ coefficients

Interpolation Find a polynomial y(t) such that y(t)=y_i $y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$ y $\begin{pmatrix} 1 & t_0 & t_0^2 & \dots & t_0^n \\ 1 & t_1 & t_1^2 & \dots & t_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \end{pmatrix}$

Interpolation

Parametric setting:

- Perform interpolation separately for x, y, (and z in 3D)
- Assign arbitrary parameter values to control points
 - I.e. choose t_i , such that $f(t_i) = (x_i, y_i)$
- This choice will affect the curve shape!

Interpolation

Parametric setting:

- Perform interpolation separately for x, y, (and z in 3D)
- Assign arbitrary parameter values to control points
 - I.e. choose t_i , such that $f(t_i) = (x_i, y_i)$
 - This choice will affect the curve shape!

Generalized Vandermonde Matrices

Assume different basis functions f_i(t)

$$y(t) = \sum c_i f_i(t)$$

$$\begin{pmatrix} f_0(t_0) & f_1(t_0) & f_2(t_0) & \dots & f_n(t_0) \\ f_0(t_1) & f_1(t_1) & f_2(t_1) & \dots & f_n(t_1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_0(t_n) & f_1(t_n) & f_2(t_n) & \dots & f_n(t_n) \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \\ y_n \end{pmatrix}$$

olfgang Heidric

Other Bases for Polynomials

Bernstein Polynomials

$$B_i^m(t) := \binom{m}{i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1]$$

• Graph for degree m=1:

Wolfgang Heidr

Bernstein Polynomials

- Graph for m=2:
- Graph for m=3:

Bernstein Polynomials

$B_i^m(t) := {m \choose i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1]$

Properties:

- B_i^m(t) is a polynomial of degree m
- $B_i^m(t) \ge 0$ for $t \in [0,1]; B_0^m(0) = 1; B_i^m(0) = 0$ for $i \ne 0$
- $B_i^m(t) = B_{m-i}^m(1-t)$
- B M(t) has exactly one maximum in the interval 0..1. It is at t=i/m (proof: compute derivative...)
- W/o proof: all (m+1) functions B_i^m are linearly independent
 - Thus they form a basis for all polynomials of degree ≤ m

Wolfgang Heidrich

UI

Bernstein Polynomials

More properties

$$\sum_{i=0}^{m} B_i^m(t) = (t + (1-t))^m = 1$$

$$B_i^m(t) = t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_i^{m-1}(t)$$

Both are quite important a fast evaluation algorithm of Bézier curves (de Casteljau algorithm)

Wolfgang Heidrich

Bézier Curves

Definition:

 A Bézier curve is a polynomial curve that uses the Bernstein polynomials as a basis

$$F(t) = \sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)$$

- The b_i are called <u>control points</u> of the Bézier curve
- The control polygon is obtained by connecting the control points with line segments

Advantage of Bézier curves:

 The control points and control polygon have clear geometric meaning and are intuitive to use

Wolfgang Heidrick

Properties of Bézier Curves (Pierre Bézier, Renault, about 1960)

Easy to see:

The endpoints b_0 and b_m of the control polygon are interpolated and the corresponding parameter values are t=0 and t=1

More properties:

- The Bézier curve is tangential to the control polygon in the endpoints
- The curve completely lies within the convex hull of the control points
- The curve is affine invariant
- There is a fast, recursive evaluation algorithm

Wolfgang Heidrich

Bézier Curve Properties

Recall:

Bernstein polynomials have values between 0 and 1 for t \in [0,1], and

$$\sum\nolimits_{i=0}^{m}B_{i}^{m}(t)=1$$

- Therefore: every point on Bézier curve is convex combination of control points
- Therefore: Bézier curve lies completely within convex hull of control points

Wolfgang Heidric

De Casteljau Algorithm

Also recall:

• Recursive formula for Bernstein polynomials:

$$B_i^m(t) = t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_i^{m-1}(t)$$

Plug into Bézier curve definition:

$$F(t) = \sum_{i=0}^{m} \mathbf{b}_{i} \left(t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_{i}^{m-1}(t) \right)$$
$$= t \cdot \sum_{i=0}^{m} \mathbf{b}_{i} B_{i-1}^{m-1}(t) + (1-t) \cdot \sum_{i=0}^{m-1} \mathbf{b}_{i} B_{i}^{m-1}(t)$$

Volfgang Heidrich

De Casteljau Algorithm

n

Consequence:

- Every point $F(t_0)$ on a Bézier curve of degree m is the convex combination of two points $G(t_0)$ and $H(t_0)$ that lie on Bézier curves of degree m-1.
- The control points of G(t) are the <u>first</u> m control points of F(t)
- The control points of H(t) are the <u>last</u> m control points of F(t)

Wolfgang Heidrich

De Casteljau Algorithm

Recursion:

- Every point on a Bézier curve can be generated through successive convex combinations of the degree 0 Bézier
- Degree 0 Bézier curves are the control points!

$$F(t) = \sum_{i=0}^{0} \mathbf{b}_{i} B_{i}^{0}(t) = \mathbf{b}_{i} \cdot 1 = \mathbf{b}_{i}$$

De Casteljau Algorithm

After working out the math we get:

 $F(t) = \mathbf{b}_0^m(t)$; where

 $\mathbf{b}_{i}^{0}(t) := \mathbf{b}_{i}(t); \quad i = 0...m$

 $\mathbf{b}_{i}^{l}(t) := (1-t) \cdot \mathbf{b}_{i}^{l-1}(t) + t \cdot \mathbf{b}_{i+1}^{l-1}(t)$

De Casteljau Algorithm

Graphical Interpretation:

Determine point F(1/2) for the cubic Bézier curve given by the following four points:

De Casteljau Algorithm

Evaluation scheme (cubic case):

More on Curves & Surfaces

This was a (very) quick overview

- More details in CPSC 424 (Geometric Modeling)
- Offered every other year
- Taught by Alla Sheffer in 2012/13

Coming Up

Monday:

Examples of recent graphics research

Wednesday:

- Course summary
- Q&A (bring your questions...)