Global lllumination
Curves
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Course News

Assignment 3 (project)
Due today!!
Demos in labs starting this Friday
Demos are MANDATORY(!)
Reading
Chapter 10 (ray tracing), except 10.8-10.10
Chapter 14 (global illumination)
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Direct lllumination

Image by
Henrik Wann Jensen

Global lllumination

Image by
Henrik Wann Jensen
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Rendering Equation

Equation guiding global illumination:
L,(x,)=L(x,)+ [ p(xw.0)L)do,

=L,(x0,)+ [ p(x.0,0)L,R(x.0)~0)do,
Where o

p is the reflectance from w, to w, at point x
L, is the outgoing (l.e. reflected) radiance at point x in direction o

Radiance is a specific physical quantity describing the amount
of light along a ray

Radiance is constant along a ray
L, is the emitted radiance (=0 unless point x is on a light source)

R is the “ray-tracing function”. It describes what point is visible
from x in direction o,
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Rendering Equation

Equation guiding global illumination:
L,(x,)=L(x,)+ [ p(xw.0)L)do,

=L,(x0,)+ [ p(x.0,0)L,R(x.0)~0)do,
Q

Note:
The rendering equation is an integral equation
This equation cannot be solved directly
Ray-tracing function is complicated!

Similar to the problem we had computing
illumination from area light sources!
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Ray Casting

Cast a ray from the eye through each pixel
The following few slides are from Fred Durand (MIT)

Ray Tracing

Cast a ray from the eye through each pixel
Trace secondary rays (light, reflection, refraction)
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Monte Carlo Ray Tracing
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Cast a ray from the eye through each pixel
Cast random rays from the visible point
Accumulate radiance contribution
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Monte Carlo Ray Tracing
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Cast a ray from the eye through each pixel
Cast random rays from the visible point
Recurse
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Monte Carlo
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Cast a ray from the eye through each pixel
Cast random rays from the visible point
Recurse
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Monte Carlo
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Systematically sample primary light




Monte Carlo Path Tracing

In practice:
Do not branch at every intersection point

This would have exponential complexity in the ray
depth!

Instead:

Shoot some number of primary rays through the pixel
(10s-1000s, depending on scene!)

For each pixel and each intersection point, make a
single, random decision in which direction to go next
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Monte Carlo Path Tracing

Trace only one secondary ray per recursion
But send many primary rays per pixel
(performs antialiasing as well)
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How to Sample?

Simple sampling strategy:

At every point, choose between all possible reflection
directions with equal probability

This will produce very high variance/noise if the
materials are specular or glossy

Lots of rays are required to reduce noise!

Better strategy: importance sampling

Focus rays in areas where most of the reflected light
contribution will be found

For example: if the surface is a mirror, then only light
from the mirror direction will contribute!

Glossy materials: prefer rays near the mirror direction
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How to Sample?

Images by Veach & Guibas

Multiple importance sai I




How to Sample?

Sampling strategies are still an active
research area

Recent years have seen drastic advances in
performance

Lots of excellent sampling strategies have been
developed in statistics and machine learning

Many are useful for graphics

How to Sample?

Objective:

Compute light transport in scenes using stochastic ray
tracing

Monte Carlo, Sequential Monte Carlo
Metropolis

[Burke, Ghosh, Heidrich ‘05]
Ghosh, Heidrich ‘06], .
Ghosh, Doucet, Heidrich ‘06]




How to Sample?

E.g: importance sampling (left) vs. Sequential Monte
Carlo (right)
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More on Global lllumination

This was a (very) quick overview

More details in CPSC 514 (Computer Graphics:
Rendering)

Not offered this year, but in 20011/12

Wolfgang Heidrich
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Curves

Wolfgang Heidrich

Wolfgang Heidrich

Motivation

Geometric representations so far:
Discrete geometry
Triangles, line segments
Rendering pipeline, ray-tracing
Specific objects
Spheres
Ray-tracing
Want more general representations:
Flexible like triangles
But smooth!

Wolfgang Heidrich
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Curves&Surfaces as
Parametric Functions

Curvesé&surfaces in arbitrary dimensions

C :
Hes x=F(@);F:R—~R"
Surfaces: > J
x=F(s,1);F:-R“ >R

In practice:
Restrict to specific class of functions
e.g. polynomials of certain degree

ib. X\ (b
= i In 2D: = ’ t’
03l
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Polynomial Curves

Advantages:
Computationally easy to handle

b, ... b, uniquely describe curve (finite storage,
easy to represent)

Disadvantages:
Not all shapes representable
Partially fix with piecewise functions (splines)
Still not very intuitive
Fix: represent polynomials in different basis
For example: Bernstein polynomials
This is what is called a Bézier curve
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Polynomial Bases

Reminder

The set of all polynomials of degree < m over R forms
a vector space with the common polynomial
operations

What are those operations?
Dimension of this space is m+1
One common basis for this space are the monomials

{1,t,£%,...,t"}

Problem: the relationship between this basis and a
geometric shape is quite unintuitive

Thus: use another basis later!
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Interpolation

Find a polynomial y(t) such that y(t)=y,

For 4 points t: need cubic polynomial
y(t)=cy +ct+ct’ +cit’

yA
Co
C
(1 t 1 t3) "=y
C
basis
- —t—t—;

coefficients
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Interpolation

Find a polynomial y(t) such that y(t)=y,

y(t)=cy +ct+ct’ +cit’
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Interpolation

Find a polynomial y(t) such that y(t)=y,

Example: V4
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Interpolation

Find a polynomial y(t) such that y(t)=y,

Example: V4

Co 3

¢ A

c, |6

&)\ —t——,
Interpolation

Find a polynomial y(t) such that y(t)=y,

y A
Intuitive control of curve using
control points!

Wolfgang Heidrich
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Interpolation

Parametric setting:

Perform interpolation separately for x, y, (and z in 3D)

Assign arbitrary parameter values to control points
l.e. choose t, such that

)= (4y) p() = (x(0), y(®))
This choice will affect the Y
curve shape!
> X
Interpolation
Parametric setting:

Perform interpolation separately for x, y, (and z in 3D)

Assign arbitrary parameter values to control points
l.e. choose t, such that

f(t)= (x,y)
This choice will affect the )V 4
curve shape!
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Generalized Vandermonde Matrices

Assume different basis functions f(t)
y(0) = E ¢.fi()

Lt £t filty) o fit) Z i
L&) @) L) . L]
: : : : : G =M
L&) £ L) - i) :
C yn
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Other Bases for Polynomials

Bernstein Polynomials
my . .
B"(t) = ( . )t’(l -)"";i=0.m;t€[0,1]
l

Graph for degree m=1:

> plot({x,1-x},x=0..1);
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Bernstein Polynomials

[> plot{{seq(binomial (2,i)*t~i*(1-t)~(2-1i),1i=0..2)},

Graph for m=2: £=0..1,color=black);
'
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Graph for m=3: > plot({seq(binomial (3, i)*t"l*(l t) (3- 1) i=0..3)},

t=0..1,color=bhlack);
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Bernstein Polynomials

B"(1) = ’? £ (1=1)"" i = 0..m:t E[0,1]

Properties:
B,M(t) is a polynomial of degree m
B"(t)=0 fort €[0,1];B, (0)=1;B/"(0) =0 for i =0
B™(t)= B,,,m(1-1)

Bm(t) has exactlfy one maximum in the interval 0..1. It
is at t=i/m (proof: compute derivative..

W/o proof all (m+1) functions B/™ are Imearly
independent

Thus they form a basis for all polynomials of
degree =m

Wolfgang Heidrich




Bernstein Polynomials

Mo:r'ne properties
EB;"@) =(t+(1-0)" =1

=0

BI(t)=t-B"(0)+(1-0) B (1)

Both are quite important a fast evaluation algorithm of
Bézier curves (de Casteljau algorithm)
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Bézier Curves

Definition:

A Beézier curve is a polynomial curve that uses the
Bernstein polynomials as a basis

F(ty=Sb,8"()

1=

The b, are called control points of the Bézier curve

The control polygon is obtained by connecting the
control points with line segments

Advantage of Bézier curves:

The control points and control polygon have clear
geometric meaning and are intuitive to use

Wolfgang Heidrich
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Properties of Bézier Curves
(Pierre Bézier, Renault, about 1960)

Easy to see:

The endpoints b, and b, of the control polygon are
interpolated and the corresponding parameter values
are t=0 and t=1

More properties:

The Bézier curve is tangential to the control polygon in
the endpoints

The curve completely lies within the convex hull of the
control points

The curve is affine invariant
There is a fast, recursive evaluation algorithm
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Bézier Curve Properties

F6y= b8 (0)

Recall:

Bernstein polynomials have values between 0 and 1 for
te[0,1], and

EZO Bim (t) =1

Therefore: every point on Bézier curve is convex
combination of control points

Therefore: Bézier curve lies completely within convex
hull of control points

Wolfgang Heidrich
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De Casteljau Algorithm

Also recall:
Recursive formula for Bernstein polynomials:

Bim ()= t'Bz’n—ll_l )+ 1-1) 'Bim_l (¢)
Plug into Bézier curve definition:

F(r) = 2bi(r-Bi’f;1<z> +(1-1)- B\ (1))

m m-1
—t 2 b.B" () +(1-1)- 2 b.B" (1)
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De Casteljau Algorithm

Consequence:

Every point F(7,) on a Bézier curve of degree m is the
convex combination of two points G(t,) and H(t,) that lie
on Bézier curves of degree m-1.

The control points of G(z) are the first m control points of
F()
The control points of H(z) are the last m control points of

F()

Wolfgang Heidrich
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De Casteljau Algorithm

Recursion:

Every point on a Bézier curve can be generated through
successive convex combinations of the degree 0 Bézier
curves

Degree 0 Bézier curves are the control points!

0
F(t)= ZbiBf (t)=b,-1=b,
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De Casteljau Algorithm

After working out the math we get:
F(t)=by (¢) ; where
b)(t):=b,(t); i=0...m
b!(t):=(1-1)-b "' () +¢-bl] (¢)

i+1

Wolfgang Heidrich
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De Casteljau Algorithm

Graphical Interpretation:

Determine point F(1/2) for the cubic Bézier curve given

by the following four points:
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De Casteljau Algorithm

Evaluation scheme (cubic case):

/\
/\/\
1/\/\/\
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More on Curves & Surfaces

This was a (very) quick overview
More details in CPSC 424 (Geometric Modeling)
Offered every other year
Taught by Alla Sheffer in 2012/13
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Coming Up

Monday:

Examples of recent graphics research

Wednesday:
Course summary
Q&A (bring your questions...)

Wolfgang Heidrich
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