

# Global Illumination Curves

## **Wolfgang Heidrich**

**Wolfgang Heidrich** 

## **Course News**



## Assignment 3 (project)

- Due today!!
- Demos in labs starting this Friday
- Demos are MANDATORY(!)

## Reading

- · Chapter 10 (ray tracing), except 10.8-10.10
- Chapter 14 (global illumination)







## **Rendering Equation**

#### Equation guiding global illumination:

$$\begin{split} L_o(x,\omega_o) &= L_e(x,\omega_o) + \int\limits_{\Omega} \rho(x,\omega_i,\omega_0) L_i(\omega_i) d\omega_i \\ &= L_e(x,\omega_o) + \int\limits_{\Omega} \rho(x,\omega_i,\omega_0) L_o(R(x,\omega_i),-\omega_i) d\omega_i \end{split}$$

- Where
- ρ is the reflectance from ω<sub>i</sub> to ω<sub>o</sub> at point x
  L<sub>o</sub> is the outgoing (I.e. reflected) radiance at point x in direction ω<sub>i</sub>
  - Radiance is a specific physical quantity describing the amount of light along a ray
  - Radiance is constant along a ray
- L<sub>e</sub> is the emitted radiance (=0 unless point x is on a light source)
- $^{\bullet}$  R is the "ray-tracing function". It describes what point is visible from x in direction  $\omega_{\text{i}}$

Wolfgang Heidrich



# **Rendering Equation**

#### **Equation guiding global illumination:**

$$\begin{split} L_o(x, \omega_o) &= L_e(x, \omega_o) + \int\limits_{\Omega} \rho(x, \omega_i, \omega_0) L_i(\omega_i) d\omega_i \\ &= L_e(x, \omega_o) + \int\limits_{\Omega} \rho(x, \omega_i, \omega_0) L_o(R(x, \omega_i), -\omega_i) d\omega_i \end{split}$$

#### Note:

- The rendering equation is an integral equation
- This equation cannot be solved directly
  - Ray-tracing function is complicated!
  - Similar to the problem we had computing illumination from area light sources!



# **Ray Casting**

- Cast a ray from the eye through each pixel
- The following few slides are from Fred Durand (MIT)



# **Ray Tracing**



- Cast a ray from the eye through each pixel
- Trace secondary rays (light, reflection, refraction)



# Monte Carlo Ray Tracing



- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
  - Accumulate radiance contribution



# **Monte Carlo Ray Tracing**



- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse



# **Monte Carlo**



- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
- Recurse



# **Monte Carlo**



Systematically sample primary light





## **Monte Carlo Path Tracing**

#### In practice:

- Do not branch at every intersection point
  - This would have exponential complexity in the ray depth!
- Instead:
  - Shoot some number of primary rays through the pixel (10s-1000s, depending on scene!)
  - For each pixel and each intersection point, make a single, random decision in which direction to go next

**Wolfgang Heidrich** 

# **Monte Carlo Path Tracing**



- Trace only one secondary ray per recursion
- But send many primary rays per pixel





## **How to Sample?**

### Simple sampling strategy:

- At every point, choose between all possible reflection directions with equal probability
- This will produce very high variance/noise if the materials are specular or glossy
- Lots of rays are required to reduce noise!

#### Better strategy: importance sampling

- Focus rays in areas where most of the reflected light contribution will be found
- For example: if the surface is a mirror, then only light from the mirror direction will contribute!
- Glossy materials: prefer rays near the mirror direction

Wolfgang Heidrich

# **How to Sample?**

Images by Veach & Guibas









## **How to Sample?**

# Sampling strategies are still an active research area!

- Recent years have seen drastic advances in performance
- Lots of excellent sampling strategies have been developed in statistics and machine learning
  - Many are useful for graphics

Wolfgang Heidrich



# **How to Sample?**

#### Objective:

- Compute light transport in scenes using stochastic ray tracing
  - Monte Carlo, Sequential Monte Carlo
  - Metropolis

[Burke, Ghosh, Heidrich '05] [Ghosh, Heidrich '06], [Ghosh, Doucet, Heidrich '06]







# **How to Sample?**

• E.g: importance sampling (left) vs. Sequential Monte Carlo (right)

olfgang Heidrich



## More on Global Illumination

## This was a (very) quick overview

- More details in CPSC 514 (Computer Graphics: Rendering)
- Not offered this year, but in 20011/12



### **Curves**

## **Wolfgang Heidrich**

**Wolfgang Heidricl** 

# **Motivation**



## Geometric representations so far:

- Discrete geometry
  - Triangles, line segments
  - Rendering pipeline, ray-tracing
- Specific objects
  - Spheres
  - Ray-tracing

## Want more general representations:

- Flexible like triangles
- But smooth!

# Curves&Surfaces as Parametric Functions



### Curves&surfaces in arbitrary dimensions

• Curves:

$$\mathbf{x} = F(t); F : \mathbf{R} \mapsto \mathbf{R}^d$$

Surfaces:

$$\mathbf{x} = F(s,t); F : \mathbf{R}^2 \mapsto \mathbf{R}^d$$

#### In practice:

- Restrict to specific class of functions
  - e.g. polynomials of certain degree

$$\mathbf{x} = \sum_{i=0}^{m} \mathbf{b}_{i} t^{i}$$

In 2D: 
$$\begin{pmatrix} x \\ y \end{pmatrix} = \sum_{i=0}^{m} \begin{pmatrix} b_{x,i} \\ b_{y,i} \end{pmatrix} t^{i}$$

Wolfgang Heidrich



# **Polynomial Curves**

#### Advantages:

- Computationally easy to handle
  - $-\mathbf{b}_0 \dots \mathbf{b}_m$  uniquely describe curve (finite storage, easy to represent)

#### Disadvantages:

- Not all shapes representable
  - Partially fix with piecewise functions (splines)
- Still not very intuitive
  - Fix: represent polynomials in different basis
  - For example: Bernstein polynomials
  - This is what is called a Bézier curve



## **Polynomial Bases**

#### Reminder

- The set of all polynomials of degree ≤ m over R forms a vector space with the common polynomial operations
  - What are those operations?
  - Dimension of this space is m+1
- One common basis for this space are the monomials

$$\{1,t,t^2,\ldots,t^m\}$$

- Problem: the relationship between this basis and a geometric shape is quite unintuitive
- Thus: use another basis later!

Wolfgang Heidrich



# Interpolation

## Find a polynomial y(t) such that y(t<sub>i</sub>)=y<sub>i</sub>

• For 4 points t<sub>i</sub>: need cubic polynomial

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$$

$$(1 \quad t \quad t^2 \quad t^3) \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = y(t)$$
basis

coefficients



# Interpolation

# Find a polynomial y(t) such that y(t,)=yi

$$y(t) = c_0 + c_1 t + c_2 t^2 + c_3 t^3$$

$$\begin{pmatrix} 1 & t_0 & t_0^2 & \dots & t_0^n \\ 1 & t_1 & t_1^2 & \dots & t_1^n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & t_n & t_n^2 & \dots & t_n^n \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$
Vandermonde matrix

Wolfgang Heidrich

# Interpolation

## Find a polynomial y(t) such that y(t,)=yi





# Interpolation

# Find a polynomial y(t) such that y(t;)=y;

Example:

$$\begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -20/3 \\ 6 \\ -1/3 \end{pmatrix}$$



Wolfgang Heidrich

# Interpolation



Find a polynomial y(t) such that y(t;)=y;

Intuitive control of curve using control points!



# UBC

# Interpolation

### Parametric setting:

- Perform interpolation separately for x, y, (and z in 3D)
- Assign arbitrary parameter values to control points
  - I.e. choose  $t_i$ , such that  $f(t_i) = (x_i, y_i)$
  - This choice will affect the curve shape!



# UBC

# Interpolation

### Parametric setting:

- Perform interpolation separately for x, y, ( and z in 3D)
- Assign arbitrary parameter values to control points
  - I.e. choose  $t_i$ , such that  $f(t_i) = (x_i, y_i)$
  - This choice will affect the curve shape!





#### **Generalized Vandermonde Matrices**

## Assume different basis functions fi(t)

$$y(t) = \sum_{i} c_i f_i(t)$$

$$\begin{pmatrix} f_0(t_0) & f_1(t_0) & f_2(t_0) & \dots & f_n(t_0) \\ f_0(t_1) & f_1(t_1) & f_2(t_1) & \dots & f_n(t_1) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ f_0(t_n) & f_1(t_n) & f_2(t_n) & \dots & f_n(t_n) \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$$

Wolfgang Heidrich



# **Other Bases for Polynomials**

### Bernstein Polynomials

$$B_i^m(t) := {m \choose i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1]$$

Graph for degree m=1:





## **Bernstein Polynomials**

• Graph for m=2:

> plot({seq(binomial(2,i)\*t^i\*(1-t)^(2-i),i=0..2)}, t=0..1,color=black);



Graph for m=3:





# **Bernstein Polynomials**

$$B_i^m(t) := {m \choose i} t^i (1-t)^{m-i}; i = 0..m; t \in [0,1]$$

## Properties:

- B<sub>i</sub>m(t) is a polynomial of degree m
- $B_i^m(t) \ge 0$  for  $t \in [0,1]; B_0^m(0) = 1; B_i^m(0) = 0$  for  $i \ne 0$   $B_i^m(t) = B_{m-i}^m(1-t)$
- B<sub>i</sub><sup>m</sup>(t) has exactly one maximum in the interval 0..1. It is at t=i/m (proof: compute derivative...)
- W/o proof: all (m+1) functions B<sub>i</sub><sup>m</sup> are linearly independent
  - Thus they form a basis for all polynomials of degree ≤ m



## **Bernstein Polynomials**

## More properties

$$\sum_{i=0}^{m} B_i^m(t) = (t + (1-t))^m = 1$$

$$B_i^m(t) = t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_i^{m-1}(t)$$

 Both are quite important a fast evaluation algorithm of Bézier curves (de Casteljau algorithm)

Wolfgang Heidrich



## **Bézier Curves**

#### **Definition:**

 A Bézier curve is a polynomial curve that uses the Bernstein polynomials as a basis

$$F(t) = \sum_{i=0}^{m} \mathbf{b}_i B_i^m(t)$$

- The b<sub>i</sub> are called <u>control points</u> of the Bézier curve
- The <u>control polygon</u> is obtained by connecting the control points with line segments

#### Advantage of Bézier curves:

 The control points and control polygon have clear geometric meaning and are intuitive to use

# Properties of Bézier Curves (Pierre Bézier, Renault, about 1960)

#### Easy to see:

 The endpoints b<sub>0</sub> and b<sub>m</sub> of the control polygon are interpolated and the corresponding parameter values are t=0 and t=1

#### More properties:

- The Bézier curve is tangential to the control polygon in the endpoints
- The curve completely lies within the convex hull of the control points
- The curve is affine invariant
- There is a fast, recursive evaluation algorithm

Wolfgang Heidrich

# **Bézier Curve Properties**



$$F(t) = \sum_{i=0}^{m} \mathbf{b}_{i} B_{i}^{m}(t)$$

#### Recall:

 Bernstein polynomials have values between 0 and 1 for t∈[0,1], and

$$\sum\nolimits_{i=0}^{m}B_{i}^{m}(t)\equiv1$$

- Therefore: every point on Bézier curve is convex combination of control points
- Therefore: Bézier curve lies completely within convex hull of control points



## De Casteljau Algorithm

#### Also recall:

Recursive formula for Bernstein polynomials:

$$B_i^m(t) = t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_i^{m-1}(t)$$

### Plug into Bézier curve definition:

$$F(t) = \sum_{i=0}^{m} \mathbf{b}_{i} \left( t \cdot B_{i-1}^{m-1}(t) + (1-t) \cdot B_{i}^{m-1}(t) \right)$$

$$= t \cdot \sum_{i=1}^{m} \mathbf{b}_{i} B_{i-1}^{m-1}(t) + (1-t) \cdot \sum_{i=0}^{m-1} \mathbf{b}_{i} B_{i}^{m-1}(t)$$

Wolfgang Heidrich



## De Casteljau Algorithm

#### Consequence:

- Every point  $F(t_0)$  on a Bézier curve of degree m is the convex combination of two points  $G(t_0)$  and  $H(t_0)$  that lie on Bézier curves of degree m-1.
- The control points of G(t) are the <u>first</u> m control points of F(t)
- The control points of H(t) are the <u>last</u> m control points of F(t)



# De Casteljau Algorithm

#### Recursion:

- Every point on a Bézier curve can be generated through successive convex combinations of the degree 0 Bézier curves
- Degree 0 Bézier curves are the control points!

$$F(t) = \sum_{i=0}^{0} \mathbf{b}_{i} B_{i}^{0}(t) = \mathbf{b}_{i} \cdot 1 \equiv \mathbf{b}_{i}$$

**Wolfgang Heidrich** 



# De Casteljau Algorithm

#### After working out the math we get:

$$F(t) = \mathbf{b}_0^m(t)$$
; where

$$\mathbf{b}_{i}^{0}(t) := \mathbf{b}_{i}(t); \quad i = 0...m$$

$$\mathbf{b}_{i}^{l}(t) := (1-t) \cdot \mathbf{b}_{i}^{l-1}(t) + t \cdot \mathbf{b}_{i+1}^{l-1}(t)$$



# De Casteljau Algorithm

## **Graphical Interpretation:**

• Determine point F(1/2) for the cubic Bézier curve given by the following four points:



Wolfgang Heidrich

# De Casteljau Algorithm



## Evaluation scheme (cubic case):





## More on Curves & Surfaces

## This was a (very) quick overview

- More details in CPSC 424 (Geometric Modeling)
- Offered every other year
- Taught by Alla Sheffer in 2012/13

Wolfgang Heidrich

# **Coming Up**

#### Monday:

Examples of recent graphics research

### Wednesday:

- Course summary
- Q&A (bring your questions...)