Ray-Tracing Soft Shadows
Global lllumination

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Homework 8
Ray-tracing, global illumination
Discussed today, tomorrow in labs
Assignment 3 (project)
Due Friday!!
Demos in labs starting this Friday
Demos are MANDATORY(!)
Reading
Chapter 10 (ray tracing), except 10.8-10.10
Chapter 14 (global illumination)

Wolfgang Heidrich

Ray-Tracing

Basic Algorithm (Whithead):
for every pixel p; {
Generate ray r from camera position through pixel p;
p;= background color
for every object o in scene {

if(r intersects o && intersection is closer than previously
ound intersections)

Compute lighting at intersection point, using local
normal and material properties; store result in p;

Wolfgang Heidrich

Ray-Tracing
Shadows

Approach:

To test whether point is in shadow, send out shadow
rays to all light sources

If ray hits another object, the point lies in shadow

Wolfgang Heidrich

Ray-Tracing
Reflections/Refractions

Approach:

Send rays out in reflected and refracted direction to
gather incoming light

That light is multiplied by local surface color and Fresnel
term, and added to result of local shading

SR

Wolfgang Heidrich

.iC
B[
mo

]
)

Recursive Ray Tracing

Ray tracing can handle
Reflection (chrome)
Refraction (glass)

Shadows

Spawn secondary rays
Reflection, refraction

If another object is hit, recurse to ~\pixel positions
find its color projection on projection

Shadow reference plane

oint
Cast ray from intersection point tg
light source, check if intersects
another object

Wolfgang Heidrich

Recursive Ray-Tracing

Light

Ray Whitted, 1980

Wolfgang Heidrich

Recursive Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,0bj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,0bj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

Wolfgang Heidrich

Algorithm Termination Criteria

Termination criteria
No intersection
Reach maximal depth
Number of bounces

Contribution of secondary ray attenuated below
threshold

Each reflection/refraction attenuates ray

Wolfgang Heidrich

Reflection N
Mirror effects 2 1N2)
Perfect specular reflection

Wolfgang Heidrich

Refraction d n

Happens at interface between 0,

transparent object and
surrounding medium

E.g. glass/air boundary

Snell’s Law
¢, sinf, = ¢, sin0,

Light ray bends based on refractive
indices ¢y, C,

Wolfgang Heidrich

Area Light Sources

So far:
All lights were either point-shaped or directional
Both for ray-tracing and the rendering pipeline

Thus, at every point, we only need to compute lighting
formula and shadowing for ONE light direction

In reality:
All lights have a finite area

Instead of just dealing with one direction, we now have
to integrate over all directions that go to the light source

Wolfgang Heidrich

;C
B[
mo)

N
']
)

Area Light Sources

Area lights produce soft shadows:

In 2D: — “ Area light
_‘ Occluding surface
Receiving surface \
Umbra Penumbra
(core shadow) (partial shadow) woifgang Heidrich

N
']
)

;C
B[
mo)

Area Light Sources

Point lights:

Only one light direction:
.Point light

Ireﬂected = p) V) Ilight
V is visibility of light (0 or 1)
p is lighting

model (e.g.
diffuse or Phong)

Wolfgang Heidrich

Are Light Sources

Area Lights:
Infinitely many light rays

Need to integrate
over all of them:

I eflected = fp(w)) V(CU) ’ Ilight ((U) ' dﬂ)

%

Area light

light
directions

Lighting model
visibility and

light intensity

can now be different
for every ray!

Wolfgang Heidrich

Integrating over Light Source

Rewrite the integration
Instead of integrating over directions

Ireﬂected = fp(w) : V((U) : Ilight ((U) : da)

light
directions

we can integrate over points on the light source

-a)-V(p-
reflected (q) = f pp=4) (zp 9 ’ I;,-gh,(P) “ds-dt
w lp-ql
where q: point on reflecting surface, p= F(s,t) is a point
on the area light
We are integrating over p
Denominator: quadratic falloff! Wolfgang Heidrich

Integration

Problem:

Except for the simplest of scenes, either integral is not
solvable analytically!

This is mostly due to the visibility term, which could be
arbitrarily complex depending on the scene

So:
Use numerical integration

Effectively: approximate the light with a whole number
of point lights

Wolfgang Heidrich

Numerical Integration

Regular grid of point lights

. Area light
Problem: e e

will see 4 hard .""
shadows rather than

as soft shadow

Need LOTS of points
to avoid this problem

Wolfgang Heidrich

Monte Carlo Integration

Better:

- Randomly choose Area light
the points

Use different points on
light for computing the
lighting in different points
on reflecting surface

This produces
random noise

Visually preferable to
structured artifacts

Wolfgang Heidrich

Monte Carlo Integration

one shadow ray

lots of shadow rays

10

Monte Carlo Integration

Formally:
Approximate integral with finite sum
—-a)'V(ip-
Ireﬂected (q) = f p(p q) (p Q)) I

2 light
lp-ql ®

(p)-ds-dt

zéip(pi—q)v(p,--q)_
N

L (D)
i=1 Ip,—q P ¢

where
The p; are randomly chosen on the light source
With equal probability!
A is the total area of the light
N is the number of samples (ravs) Wolfgang Heierich

Sampling

Sample directions vs. sample light source

Most directions do not correspond to points on the light
source

Thus, variance will be higher than sampling light
directl Images by Matt Pharr

11

Monte Carlo Integration

Note:

This approach of approximating lighting integrals with
sums over randomly chosen points is much more
flexible than this!

In particular, it can be used for global illumination

Light bouncing off multiple surfaces before hitting the
eye

Wolfgang Heidrich

Global lllumination

So far:

Have considered only light directly coming form the light
sources

As well as mirror reflections, refraction
In reality:

Light bouncing off diffuse and/or glossy surfaces also
iluminates other surfaces

This is called global illumination

Wolfgang Heidrich

12

Direct lllumination

Image by
Henrik Wann Jensen

Global lllumination

Image by
Henrik Wann Jensen

13

iC
B[
mo)

]
)

Rendering Equation

Equation guiding global illumination:
L,(x,)=L(x,)+ [p(xw.0)L)do,

=L,(x0,)+ [p(x.0,0)L,R(x.0)~0)do,
Where o

p is the reflectance from w, to w, at point x
L, is the outgoing (l.e. reflected) radiance at point x in direction o

Radiance is a specific physical quantity describing the amount
of light along a ray

Radiance is constant along a ray
L, is the emitted radiance (=0 unless point x is on a light source)

R is the “ray-tracing function”. It describes what point is visible
from x in direction o,

Wolfgang Heidrich

iC
B[
mo)

]
)

Rendering Equation

Equation guiding global illumination:
L,(x,)=L(x,)+ [p(xw.0)L)do,

=L,(x0,)+ [p(x.0,0)L,R(x.0)~0)do,
Q

Note:
The rendering equation is an integral equation
This equation cannot be solved directly
Ray-tracing function is complicated!

Similar to the problem we had computing
illumination from area light sources!

Wolfgang Heidrich

14

Ray Casting

Cast a ray from the eye through each pixel
The following few slides are from Fred Durand (MIT)

Ray Tracing

Cast a ray from the eye through each pixel
Trace secondary rays (light, reflection, refraction)

\

-

e S

15

Monte Carlo Ray Tracing

.iC
B[
mo

]
)

Cast a ray from the eye through each pixel
Cast random rays from the visible point
Accumulate radiance contribution

T

Monte Carlo Ray Tracing

.iC
B[
mo

]
)

Cast a ray from the eye through each pixel
Cast random rays from the visible point
Recurse

\\

1/
|

16

Monte Carlo

Cast a ray from the eye through each pixel
Cast random rays from the visible point
Recurse

T

Monte Carlo

Systematically sample primary light

}C
B[
mo)

D)
)

.}C
B[
mo

D)
)

Monte Carlo Path Tracing

In practice:
Do not branch at every intersection point

This would have exponential complexity in the ray
depth!

Instead:

Shoot some number of primary rays through the pixel
(10s-1000s, depending on scene!)

For each pixel and each intersection point, make a
single, random decision in which direction to go next

Wolfgang Heidrich

Monte Carlo Path Tracing

Trace only one secondary ray per recursion
But send many primary rays per pixel
(performs antialiasing as well)

- =
e — P
Wolfgang Heidrich

18

How to Sample?

Simple sampling strategy:

At every point, choose between all possible reflection
directions with equal probability

This will produce very high variance/noise if the
materials are specular or glossy

Lots of rays are required to reduce noise!

Better strategy: importance sampling

Focus rays in areas where most of the reflected light
contribution will be found

For example: if the surface is a mirror, then only light
from the mirror direction will contribute!

Glossy materials: prefer rays near the mirror direction

Wolfgang Heidrich

How to Sample?

Images by Veach & Guibas

Multiple importance sai I

19

How to Sample?

Sampling strategies are still an active
research area

Recent years have seen drastic advances in
performance

Lots of excellent sampling strategies have been
developed in statistics and machine learning

Many are useful for graphics

How to Sample?

Objective:

Compute light transport in scenes using stochastic ray
tracing

Monte Carlo, Sequential Monte Carlo
Metropolis

[Burke, Ghosh, Heidrich ‘05]
Ghosh, Heidrich ‘06], .
Ghosh, Doucet, Heidrich ‘06]

How to Sample?

E.g: importance sampling (left) vs. Sequential Monte
Carlo (right)

olfgang Heidrich

More on Global lllumination

This was a (very) quick overview

More details in CPSC 514 (Computer Graphics:
Rendering)

Not offered this year, but in 2008/9

Wolfgang Heidrich

21

Coming Up...

Next Week:

Global illumination

Wolfgang Heidrich

22

