

Ray-Tracing

Wolfgang Heidrich

Volfgang Heidrich

Course News

Assignment 3 (project)

Due April 1

Reading

- Chapter 10 (ray tracing), except 10.8-10.10
- · Chapter 14 (global illumination)

Friday Lecture

- Out of town for program committee meeting
- · Anika will continue discussion of ray-tracing

Wolfgang Heidrich

Overview

So far

- Real-time/HW rendering w/ Rendering Pipeline
- Rendering algorithms using the Rendering Pipeline

Now

- Ray-Tracing
- Simple algorithm for software rendering
 - Usually offline (e.g. movies etc.)
 - But: research on making this method real-time
- Extremely flexible (new effects can easily be incorporated)

Wolfgang Heidrich

Ray-Tracing

Basic Algorithm (Whithead):

for every pixel p_i {

Generate ray r from camera position through pixel p_i

p_i= background color

for every object o in scene $\{$

if(r intersects o && intersection is closer than previously found intersections)

Compute lighting at intersection point, using local normal and material properties; store result in \boldsymbol{p}_i

}

Wolfgang Heidrich

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Efficient data structures so we don't have to test intersection with every object

Note:

 Corresponds to viewing transformation in rendering pipeline!

See gluLookAt…

Ray-Tracing -

· Viewing direction: v

x direction: $x = v \times u$

Up vector: u

Generation of Rays

Camera Coordinate System
Origin: C (camera position)

olfgang Heidrich

olfgang Heidrich

Ray-Tracing – Generation of Rays

Other parameters:

- Distance of Camera from image plane: d
- Image resolution (in pixels): w, h
- Left, right, top, bottom boundaries in image plane: l, r, t, b

Then:

- Lower left corner of image: $O = C + d \cdot \mathbf{v} + l \cdot \mathbf{x} + b \cdot \mathbf{u}$
- Pixel at position i, j (i=0..w-1, j=0..h-1):

$$\begin{split} P_{i,j} &= O + i \cdot \frac{r - l}{w - 1} \cdot \mathbf{x} - j \cdot \frac{t - b}{h - 1} \cdot \mathbf{u} \\ &= O + i \cdot \Delta x \cdot \mathbf{x} - j \cdot \Delta y \cdot \mathbf{y} \end{split}$$

Wolfgang Heidrich

Ray-Tracing – Generation of Rays

Ray in 3D Space:

$$\mathbf{R}_{i,j}(t) = C + t \cdot (P_{i,j} - C) = C + t \cdot \mathbf{v}_{i,j}$$

where $t = 0... \infty$

Wolfgang Heidrich

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- · Lighting and shading
- Efficient data structures so we don't have to test intersection with every object

Wolfgang Heidrich

Ray Intersections

Task:

- Given an object o, find ray parameter t, such that $\mathbf{R}_{i,j}(t)$ is a point on the object
 - Such a value for t may not exist
- · Intersection test depends on geometric primitive

Nolfgang Heidrich

Ray Intersections

Spheres at origin:

Implicit function:

$$S(x, y, z): x^2 + y^2 + z^2 = r^2$$

· Ray equation:

$$\mathbf{R}_{i,j}(t) = C + t \cdot \mathbf{v}_{i,j} = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix} + t \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} c_x + t \cdot v_x \\ c_y + t \cdot v_y \\ c_z + t \cdot v_z \end{pmatrix}$$

Wolfgang Heidrich

Ray Intersections

To determine intersection:

• Insert ray $\mathbf{R}_{ij}(t)$ into S(x,y,z):

$$(c_x + t \cdot v_x)^2 + (c_y + t \cdot v_y)^2 + (c_z + t \cdot v_z)^2 = r^2$$

- Solve for t (find roots)
 - Simple quadratic equation

Volfgang Heidric

Ray Intersections

Other Primitives:

- Implicit functions:
 - Spheres at arbitrary positions
 - Same thing
- Conic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders)
- Same thing (all are quadratic functions!)
- Higher order functions (e.g. tori and other quartic functions)
- In principle the same
- But root-finding difficult
- Net to resolve to numerical methods

olfgang Heidrich

Ray Intersections

Other Primitives (cont)

- Polygons:
 - First intersect ray with plane
 - linear implicit function
- Then test whether point is inside or outside of polygon (2D test)
- For convex polygons
- Suffices to test whether point in on the right side of every boundary edge
- Similar to computation of outcodes in line clipping

Wolfgang Heidrich

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- · Lighting and shading
- Efficient data structures so we don't have to test intersection with every object

Wolfgang Heidrich

Ray-Tracing – Geometric Transformations

Geometric Transformations:

- Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
- Problem
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)

Wolfgang Heidrich

Ray-Tracing – Geometric Transformations

Geometric Transformations:

- · Similar goal as in rendering pipeline:
- Modeling scenes convenient using different coordinate systems for individual objects
- · Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance!)
 - Ray-Tracing has different solution:
 - The ray itself is always affine invariant!
 - Thus: transform ray into object coordinates!

Wolfgang Heidrich

Ray-Tracing – Geometric Transformations

Ray Transformation:

- For intersection test, it is only important that ray is in same coordinate system as object representation
- · Transform all rays into object coordinates
 - Transform camera point and ray direction by <u>inverse</u> of model/view matrix
- Shading has to be done in world coordinates (where light sources are given)
 - Transform object space intersection point to world coordinates
- Thus have to keep both world and object-space ray

Wolfgang Heidric

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Efficient data structures so we don't have to test intersection with every object

Volfgang Heidrich

Ray-Tracing Lighting and Shading

Local Effects:

- Local Lighting
 - Any reflection model possible
 - Have to talk about light sources, normals...
- Texture mapping
 - Color textures
 - Bump maps
 - Environment maps
 - Shadow maps

Wolfgang Heidrich

Ray-Tracing Local Lighting

Light sources:

- · For the moment: point and directional lights
- · Later: are light sources
- More complex lights are possible
 - Area lights
 - Global illumination
 - Other objects in the scene reflect light
 - Everything is a light source!
 - Talk about this on Monday

Wolfgang Heidrich

Ray-Tracing Local Lighting

Local surface information (normal...)

• For implicit surfaces F(x,y,z)=0: normal $\mathbf{n}(x,y,z)$ can be easily computed at every intersection point using the gradient

$$\mathbf{n}(x, y, z) = \begin{pmatrix} \partial F(x, y, z) / \partial x \\ \partial F(x, y, z) / \partial y \\ \partial F(x, y, z) / \partial z \end{pmatrix}$$

Example: $F(x, y, z) = x^2 + y^2 + z^2 - r^2$

$$\mathbf{n}(x, y, z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$
 Need

Needs to be normalized!

Wolfgang Heidric

Ray-Tracing Local Lighting

Local surface information

- Alternatively: can interpolate per-vertex information for triangles/meshes as in rendering pipeline
 - Phong shading!
 - Same as discussed for rendering pipeline
- · Difference to rendering pipeline:
- Interpolation cannot be done incrementally
- Have to compute Barycentric coordinates for every intersection point (e.g plane equation for triangles)

folfgang Heidrich

Ray-Tracing Texture Mapping

Approach:

- · Works in principle like in rendering pipeline
 - Given s, t parameter values, perform texture lookup
 - Magnification, minification just as discussed
- Problem: how to get s, t
 - Implicit surfaces often don't have parameterization
 - For special cases (spheres, other conic sections), can use parametric representation
 - Triangles/meshes: use interpolation from vertices

Wolfgang Heidri

Ray-Tracing

Issues:

- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- · Lighting and shading
- Efficient data structures so we don't have to test intersection with every object

Volfgang Heidrich

Ray Tracing

Data Structures

- · Goal: reduce number of intersection tests per ray
- · Lots of different approaches:
 - (Hierarchical) bounding volumes
 - Hierarchical space subdivision
 - Oct-tree, k-D tree, BSP tree

Wolfgang Heidrig

Bounding Volumes

Idea:

- Rather than testing every ray against a potentially very complex object (e.g. triangle mesh), do a quick <u>conservative</u> test first which eliminates most rays
 - Surround complex object by simple, easy to test geometry (typically sphere or axis-aligned box)
 - Want to make bounding volume as tight as possible!

Wolfgang Heidr

Hierarchical Bounding Volumes

Extension of previous idea:

· Use bounding volumes for groups of objects

Wolfgang Heidrich

Spatial Subdivision Data Structures

Bounding Volumes:

- Find simple object completely enclosing complicated objects
 - Boxes, spheres
- · Hierarchically combine into larger bounding volumes

Spatial subdivision data structure:

- · Partition the whole space into cells
- Grids, oct-trees, (BSP trees)
- Simplifies and accelerates traversal
- Performance less dependent on order in which objects are inserted

Ifgang Heidrich

Regular Grid Subdivide space into rectangular grid: - Associate every object with the cell(s) that it overlaps with - Find intersection: traverse grid In 3D: regular grid of cubes (voxels):

Traversal

Note

- This algorithm calls for computing the intersection points multiple times (once per grid cell)
- In practice: store intersections for a (ray, object) pair once computed, reuse for future cells

Wolfgang Heidrich

Regular Grid Discussion

UBG

Advantages?

- · Easy to construct
- Easy to traverse

Disadvantages?

- May be only sparsely filled
- · Geometry may still be clumped

Nolfgang Heidrich

Adaptive Grids Subdivide until each cell contains no more than n elements, or maximum depth d is reached Nested Grids Octree/(Quadtree) This slide and the next are curtsey of Fredo Durand at MIT workgame beforeing

Area Light Sources So far: All lights were either point-shaped or directional Both for ray-tracing and the rendering pipeline Thus, at every point, we only need to compute lighting formula and shadowing for ONE light direction In reality: All lights have a finite area Instead of just dealing with one direction, we now have to integrate over all directions that go to the light source

Integrating over Light Source

UBC

Rewrite the integration

Instead of integrating over directions

$$I_{\textit{reflected}} = \int\limits_{\substack{lighi\\\textit{directions}}} \rho(\omega) \cdot V(\omega) \cdot I_{\textit{light}}(\omega) \cdot d\omega$$

we can integrate over points on the light source

$$I_{reflected}(q) = \int\limits_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{\mid p-q \mid^2} \cdot I_{light}(p) \cdot ds \cdot dt$$

where q: point on reflecting surface, p= F(s,t) is a point on the area light

We are integrating over p

Denominator: quadratic falloff!

Wolfgang Heidrich

Integration

Problem:

- Except for the simplest of scenes, either integral is **not** solvable analytically!
- This is mostly due to the visibility term, which could be arbitrarily complex depending on the scene

So:

- Use numerical integration
- Effectively: approximate the light with a whole number of point lights

Wolfgang Heidrich

Monte Carlo Integration

Formally:

· Approximate integral with finite sum

$$\begin{split} I_{reflected}(q) &= \int_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{\mid p-q \mid^2} \cdot I_{light}(p) \cdot ds \cdot d \\ &\approx \frac{A}{N} \sum_{i=1}^{N} \frac{\rho(p_i-q) \cdot V(p_i-q)}{\mid p_i-q \mid^2} \cdot I_{light}(p_i) \end{split}$$

where

- The p_i are randomly chosen on the light source
- With equal probability!
- A is the total area of the light
- N is the number of samples (ravs)

Wolfgang Heidrich

Monte Carlo Integration

UBC

Note:

- This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
- In particular, it can be used for global illumination
 - Light bouncing off multiple surfaces before hitting the eye

Wolfgang Heidrich

Coming Up...

Next Week:

Global illumination

olfgang Heidrick