Shadow Volumes
Ray-Tracing

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 3 (project)
Due April 1

Reading
Chapter 10 (ray tracing), except 10.8-10.10
Chapter 14 (global illumination)

Homework 8

Out today
Last homework...

Wolfgang Heidrich

The Rendering Pipeline

Geometry | || Model/View Lightin Perspective Clioping -

Database Transform. ghting Transform. pping “
Scan | . Depth . Frame-

Conversion =gy Test Blending buffer

Wolfgang Heidrich

Visualizing the Shadow

Mapping Technique (1)

A scene with fairly complex shadows

the point
light source

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (2)

Compare with and without shadows

with shadows without shadows

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (3)

The scene from the light’s point-of-view

FYI: from the
eye’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (4)

The depth buffer from the light’s point-of-
view

FYI: from the
light’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (5)

Projecting the depth map onto the eye’s
view

FYI: depth map for
light’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Projecting light’s planar distance onto eye’s
view

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Comparing light distance to light depth map

Green is
where the
light planar Non-green is
distance and where
the light shadows
depth map are should be

approximately
equal

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (7)

Complete scene with shadows

Notice how Notice how
specular curved
highlights surfaces cast

shadows on
each other

never appear
in shadows

Wolfgang Heidrich

Shadow Maps

Approach for shadows from point light
sources

Surface point is in shadow if it is not visible from the
light source

Use depth buffer to test visibility:
Render scene from the point light source
Store resulting depth buffer as texture map

For every fragment generated while rendering from
the camera position, project the fragment into the
depth texture taken from the camera, and check if it
passes the depth test.

Wolfgang Heidrich

Shadow Volumes

Use new buffer: stencil buffer
Just another channel of the framebuffer
Can count how often a pixel is drawn

Algorithm (1):

Generate silhouette polygons for all objects
Polygons starting at silhouette edges of object
Extending away from light source towards infinity
These can be computed in vertex programs

Wolfgang Heidrich

Shadow Volumes

File Options

AiRadeon Shader Demo

Image by A:I;I ‘

Wolfgang Heidrich

Shadow Volumes

Algorithm (2):
Render all original geometry into the depth buffer

l.e. do not draw any colors (or only draw ambient
illumination term)

Render front-facing silhouette polygons while
incrementing the stencil buffer for every rendered

fragment

Render back-facin% silhouette polygons while
decrementing the stencil buffer for every rendered

fragment

Draw illuminated geometry where the stencil buffer is 0,
shadow elsewhere

Wolfgang Heidrich

Shadow Volumes

Image by ATI

Wolfgang Heidrich

Shadow Volumes

Discussion:
Object space method therefore no precision issues
Lots of large polygons: can be slow
High geometry count
Large number of pixels rendered

Wolfgang Heidrich

Ray Tracing

Wolfgang Heidrich

Wolfgang Heidrich

Course Topics
for the Rest of the Term

Ray-tracing & Global lllumination

Today, next week
Parametric Curves/Surfaces

Overview of current research

Wolfgang Heidrich

Overview

So far

Real-time/HW rendering w/ Rendering Pipeline
Rendering algorithms using the Rendering Pipeline

Now
Ray-Tracing
Simple algorithm for software rendering
Usually offline (e.g. movies etc.)
But: research on making this method real-time

Extremely flexible (new effects can easily be
incorporated)

Wolfgang Heidrich

10

Ray-Tracing

Basic Algorithm (Whithead):
for every pixel p; {
Generate ray r from camera position through pixel p;
p;= background color
for every object o in scene {

if(r intersects o && intersection is closer than previously
ound intersections)

Compute lighting at intersection point, using local
normal and material properties; store result in p;

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

Efficient data structures so we don’t have to test
intersection with every object

Wolfgang Heidrich

11

Ray-Tracing -
Generation of Rays

Camera Coordinate System
Origin: C (camera position)
Viewing direction: v
Up vector: u
x direction: x=vxu

Note:

Corresponds to viewing
transformation in rendering pipeline!

See gluLookKALt...

Wolfgang Heidrich

Ray-Tracing -
Generation of Rays

Other parameters:
Distance of Camera from image plane: d
Image resolution (in pixels): w, 4

Left, right, top, bottom boundaries
inimage plane: [, r, t, b

Then: 5
Lower left corner of image: O=C+d-v+Il-x+b-u
Pixel at position i, j (i=0..w-1, j=0..h-1):

B) =0+l'. r_l .X_j-ﬂ.u
"/ w-1 h-1

=0+i'Ax-xX-j-Ay'y

Wolfgang Heidrich

12

Ray-Tracing -
Generation of Rays

Ray in 3D Space:
R, ,@0)=C+t-(F,-C)=C+t-v,

where = (...

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays

- Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

Efficient data structures so we don’t have to test
intersection with every object

Wolfgang Heidrich

13

Ray Intersections

Task:

Given an object o, find ray parameter 7, such that R, ()
is a point on the object

Such a value for t may not exist
Intersection test depends on geometric primitive

Wolfgang Heidrich

Ray Intersections

Spheres at origin:
Implicit function:

SO, y,z): X +y 4z =r"

Ray equation:

C, V. c.+1 v,
R, (O)=C+t-v, =lc, [+t:|v, |=|c, +tV,
C, v, c,+1v,

Wolfgang Heidrich

14

Ray Intersections

To determine intersection:
Insert ray R, (7) into S(x,y,2):

2 . 2 . 2—
(c,+tv,) +(cy+t vy) +(c,+tv,) =

Solve for 7 (find roots)
Simple quadratic equation

Wolfgang Heidrich

Ray Intersections

Other Primitives:
Implicit functions:
Spheres at arbitrary positions
Same thing

Conic sections (hyperboloids, ellipsoids, paraboloids,
cones, cylinders)

Same thing (all are quadratic functions!)

Higher order functions (e.g. tori and other quartic
functions)

In principle the same
But root-finding difficult
Net to resolve to numerical methods

Wolfgang Heidrich

15

Ray Intersections

Other Primitives (cont)
Polygons:
First intersect ray with plane
linear implicit function

Then test whether point is inside or outside of
polygon (2D test)

For convex polygons

Suffices to test whether point in on the right side of
every boundary edge

Similar to computation of outcodes in line clipping

Wolfgang Heidrich

Ray-Tracing

Issues:

Generation of rays

Intersection of rays with geometric primitives
- Geometric transformations

Lighting and shading

Efficient data structures so we don’t have to test
intersection with every object

Wolfgang Heidrich

16

Ray-Tracing -
Geometric Transformations

Geometric Transformations:
Similar goal as in rendering pipeline:

Modeling scenes convenient using different
coordinate systems for individual objects

Problem:
Not all object representations are easy to transform

This problem is fixed in rendering pipeline by
restriction to polygons (affine invariance!)

Wolfgang Heidrich

Ray-Tracing -
Geometric Transformations

Geometric Transformations:
Similar goal as in rendering pipeline:

Modeling scenes convenient using different
coordinate systems for individual objects

Problem:
Not all object representations are easy to transform

This problem is fixed in rendering pipeline by
restriction to polygons (affine invariance!)

Ray-Tracing has different solution:
The ray itself is always affine invariant!
Thus: transform ray into object coordinates!

Wolfgang Heidrich

17

Ray-Tracing -
Geometric Transformations

Ray Transformation:

For intersection test, it is only important that ray is in
same coordinate system as object representation

Transform all rays into object coordinates

Transform camera point and ray direction by inverse
of model/view matrix

Shading has to be done in world coordinates (where
light sources are given)

Transform object space intersection point to world
coordinates

Thus have to keep both world and object-space ray

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations

- Lighting and shading

Efficient data structures so we don’t have to test
intersection with every object

Wolfgang Heidrich

18

Ray-Tracing
Lighting and Shading

Local Effects:

Local Lighting
Any reflection model possible

Have to talk about light sources, normals...

Texture mapping
Color textures
Bump maps
Environment maps
Shadow maps

Wolfgang Heidrich

Ray-Tracing
Local Lighting

Light sources:
For the moment: point and directional lights
Later: are light sources
More complex lights are possible
Area lights
Global illumination
Other objects in the scene reflect light
Everything is a light source!
Talk about this on Monday

Wolfgang Heidrich

19

Ray-Tracing
Local Lighting

Local surface information (normal...)

For implicit surfaces F(x,y,z)=0: normal n(x,y,z) can be
easily computed at every intersection point using the

radient
g oF (x,y,z)/ 0x
n(x,y,z)=|0F(x,y,z)/ dy
oF (x,y,z)/ oz
Example: Fx,y,2)=x"+y>+z" -1’
2x
n(x,y,z)=|2y Needs to be normalized!
2z
Ray-Tracing
Local Lighting

Local surface information

Alternatively: can interpolate per-vertex information for
triangles/meshes as in rendering pipeline

Phong shading!

Same as discussed for rendering pipeline
Difference to rendering pipeline:

Interpolation cannot be done incrementally

Have to compute Barycentric coordinates for eve
intersection point (e.g plane equation for trianglesrj/

Wolfgang Heidrich

20

Ray-Tracing
Texture Mapping

Approach:
Works in principle like in rendering pipeline
Given s, t parameter values, perform texture lookup
Magnification, minification just as discussed
Problem: how to get s, ¢
Implicit surfaces often don’t have parameterization

For special cases _(spheres, other conic sections),
can use parametric representation

Triangles/meshes: use interpolation from vertices

Wolfgang Heidrich

Ray-Tracing
Lighting and Shading

Global Effects
Shadows
Reflections/refractions

Wolfgang Heidrich

21

Ray-Tracing
Shadows

Approach:

To test whether point is in shadow, send out shadow
rays to all light sources

If ray hits another object, the point lies in shadow

Wolfgang Heidrich

Ray-Tracing
Reflections/Refractions

Approach:

Send rays out in reflected and refracted direction to
gather incoming light

That light is multiplied by local surface color and Fresnel
term, and added to result of local shading

SR

Wolfgang Heidrich

22

Recursive Ray Tracing

Ray tracing can handle
Reflection (chrome)
Refraction (glass)

Shadows
Spawn secondary rays
Reflection, refraction =
If another object is hit, recurse to “pixel positions
find its color projection on projection
Shadow reference plane
point

Cast ray from intersection point to
light source, check if intersects
another object

Wolfgang Heidrich

Recursive Ray-Tracing

Refracted
Ray Whitted, 1980

Wolfgang Heidrich

23

Recursive Ray-Tracing Algorithm

.iC
B[
mo

]
)

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,0bj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,0bj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end;

Wolfgang Heidrich

Algorithm Termination Criteria

.iC
B[
mo

]
)

Termination criteria
No intersection
Reach maximal depth
Number of bounces

Contribution of secondary ray attenuated below
threshold

Each reflection/refraction attenuates ray

Wolfgang Heidrich

24

Reflection
n e
Mirror effects 2 1N2)
Perfect specular reflection

Wolfgang Heidrich

Refraction d n
Happens at interface between 0,
transparent object and
surrounding medium
. 0
E.g. glass/air boundary 2

Snell’s Law
¢, sinf, =c,sinb,

Light ray bends based on refractive
indices c,, c,

Wolfgang Heidrich

25

Total Internal Reflection

As the angle of incidence increases from 0 to greater angles ...

...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)
..the angle of refraction approaches 90 degrees until finally

a refracted ray can no longer be seen.

Wolfgang Heidrich

Ray-Tracing
Example Images

Wolfgang Heidrich

26

Ray-Tracing Terminology

Terminology:
Primary ray: ray starting at camera
Shadow ray
Reflected/refracted ray

Ray tree: all rays directly or indirectly spawned off by a
single primary ray

Note:

Need to limit maximum depth of ray tree to ensure
termination of ray-tracing process!

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

» Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

27

Ray Tracing

Data Structures
Goal: reduce number of intersection tests per ray
Lots of different approaches:
(Hierarchical) bounding volumes
Hierarchical space subdivision
Oct-tree, k-D tree, BSP tree

Wolfgang Heidrich

Bounding Volumes

Idea:

Rather than testing every ray against a potentially very
complex object (e.g. triangle mesh), do a quick
conservative test first which eliminates most rays

Surround complex object by simple, easy to test
geometry (typically sphere or axis-aligned box)

Want to make bounding volume as tight as
possible!

Wolfgang Heidrich

28

Hierarchical Bounding Volumes

Extension of previous idea:
Use bounding volumes for groups of objects

O O QO
O 0O O ®) o0
o | o o
© o e o O
o al4
o o O

Wolfgang Heidrich

Spatial Subdivision Data
Structures

Bounding Volumes:

Find simple object completely enclosing complicated
objects

Boxes, spheres
Hierarchically combine into larger bounding volumes

Spatial subdivision data structure:
Partition the whole space into cells
Grids, oct-trees, (BSP trees)
Simplifies and accelerates traversal

Performance less dependent on order in which objects
are inserted

Wolfgang Heidrich

29

Regular Grid

Subdivide space into rectangular grid:

Associate every
object with the

cell(s) that it O
overlaps with

Find intersection:
traverse grid

In 3D: regular grid of E
cubes (voxels):

Wolfgang Heidrich

Creating a Regular Grid

Steps:

Find bounding box of scene

Choose grid resolution in x,

Y, Z Ol ©

Insert objects O

Objects that overlap multiple O

cells get referenced by all C
cells they overlap C(

Wolfgang Heidrich

30

.iC
B[
mo

]
)

Grid Traversal

Traversal:
Start at ray origin
While no intersection found
Go to next grid cell along ray T

Compute intersection of ray %7/
with all objects in the cell

Determine closest such 4/
intersection B ’\/

— Check if that intersection is
inside the cell

If so, terminate search

Wolfgang Heidrich

.iC
B[
mo

]
)

Traversal

Note:

This algorithm calls for computing the intersection
points multiple times (once per grid cell)

In practice: store intersections for a (ray, object) pair
once computed, reuse for future cells

Wolfgang Heidrich

31

.iC
B[
mo

]
)

Regular Grid Discussion

Advantages?
Easy to construct
Easy to traverse

Disadvantages?
May be only sparsely filled
Geometry may still be clumped

Wolfgang Heidrich

.iC
B[
mo

]
)

Adaptive Grids

Subdivide until each cell contains no more than
n elements, or maximum depth d is reached

Nested Grids Octree/(Quadtree)
This slide and the next are curtsey of Fredo Durand at MIT

Wolfgang Heidrich

32

Primitives in an Adaptive Grid

!!}
:'
1

Can live at intermediate levels, or
be pushed to lowest level of grid

V Ak

Octree/(Quadtree)

Wolfgang Heidrich

Adaptive Grid Discussion

!!}
:'
1

Advantages

Grid complexity matches geometric density

Disadvantages

More expensive to traverse than regular grid

gy

~

v

A
K
N

Wolfgang Heidrich

33

Coming Up...

Wednesday:

More ray-tracing

Next Week:

Global illumination

Wolfgang Heidrich

34

