Color (wrap up)
Shadows

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 3 (project)
Due April 1

Reading
Chapter 11.8, 10

Wolfgang Heidrich

Color Matching Experiments

Performed R.G.B
in the 1930s

2

ldea: perceptually based measurement
Shine given wavelength (\) on a screen

User must control three pure lights producing three
other wavelengths (say R=700 nm, G=546 nm, and

B=438 nm)
Adjust intensity of RGB until colors are identical

L{lamda)

Wolfgang Heidrich

Color Matching Experiment

Results

It was found that any color S(\) could be matched with
three suitable primaries A(A), B(A), and C(\)

Used monochromatic light at 438, 546, and 700

nanometers
Also found the space is linear, l.e. if
R(A) =S(A)
then

R(A)+ M(A)=S(A)+ M(A)
k-R(A)=k-S(A)

and

Wolfgang Heidrich

Negative Lobes

Actually:
Exact target match
possible sometimes RGB VAN
requires “negative light”

400 ~_ / 700

wav-;alength {nm)

Some red has to be added to target color to permit exact
match using “knobs” on RGB intensity output

Equivalent mathematically to removing red from RGB
output

Wolfgang Heidrich

Notation

Don’t confuse:

Primaries: the spectra of the three different light
sources: R, G, B

For the matching experiments, these were
monochromatic (l.e. single wavelength) light!

Primaries for displays usually have a wider spectrum
Coefficients R, G, B

Specify how much of R, G, B is in a given color
Color matching functions: r(A), g (A), b (A\)

Specify how much of R, G, B is needed to produce a

color that is a metamer for pure monochromatic light
of wavelength A

Wolfgang Heidrich

Negative Lobes

So:

Can’t generate all other wavelengths with any set of three positive
monochromatic lights!

Solution:

Convert to new synthetic “primaries” to make the color matching easy

X 236460 -0.51515 0.00520\R
Y |[=]|-0.89653 142640 -0.01441|G
Note: Z) \-046807 0.08875 1.00921\B

R, G, B are the same monochromatic primaries as before

The corresponding matching functions x(A), y(A), z(\) are now positive
everywhere

But the primaries contain “negative” light contributions, and are therefore
not physically realizable

Wolfgang Heidrich

CIE Gamut and A Chromaticity
Diagram

3Dgamut Y FAEEE e IENNENNNEE NN
M JEs” e aanasan NN NN SR

P H P

L BELEEEEE

. i

Ky Mi% " mm
Chromaticity diagram o cstiiissasissasss
Hue only, no intensity . RamRE. .eifEassasEmmamsEEssmsaisEEm.
0 ['A} 02 03 04 05 06 07 X

Wolfgang Heidrich

Color Interpolation, S
Dominant & Opponent Wavelength

Y, 520
|
0.8

540
omplementary wavelength
0.7

Dominant
04 wavelength

02

01 L°

Wolfgang Heidrich

Define colors with (r, g, b)
amounts of
red, green, and blue

Used by OpenGL
Hardware-centric

Describes the colors that can be
generated with specific RGB light
sources

RGB color cube sits within CIE
Subset of perceivable colors
Scaled, rotated, sheared cube

Device Color Gamuts

Use CIE chromaticity dia'gram to compare the
gamuts of various devices

X, Y, and Z are hypothetical light sources, not used in practice
as dewce prlmarles

¥~ w;..i
LA

color printer

-

o

film 08
ST Sy
" color monitor R _\
- \ /j X

:_Il'.' . 04 PN
I DN o N D
s =2

0 0

N T] 0 0.4 0.8
WH!H-— ChGirdng Heiarich

Gamut Mapping

Where does
this color go?) CIELAB

Copyright 1995-1993, Adobe Systems Inc., all rights reserved

Wolfgang Heidrich

Additive vs. Subtractive Colors

Additive: light Cl [1] [R
Monitors, LCDs Ml=11l=-1G
RGB model

Subtractive: pigment I Y . _1_ _B |
Printers

CMY(K) model

Wolfgang Heidrich

HSV Color Space

More intuitive color space for people

H = Hue Saturation
. Value
S = Saturation
V = Value
Standajd ~ Custom
Or brightness B Colars:
Or intensity | _concal|
Preview I

47

[7 =
st [1e2 =

L]

Red:
162 Green: [218

d |206 3‘ New
I 5‘
154 = Blue: |90 5‘

=
=
2

Current

Wolfgang Heidrich

Monitors

Monitors have nonlinear response to input
Characterize by gamma

displayedIntensity = ¢/ - maxIntensity
Gamma correction

14

displayedIntensity = (a” y) - maxIntensity

Gamma for CRTs:
Around 2.4

Wolfgang Heidrich

Shadows

Wolfgang Heidrich

Wolfgang Heidrich

Shadows

What are shadows?
What distinguishes a point in shadow from a lit point?

Wolfgang Heidrich

Shadows

Types of light sources
Point, directional
Area lights and generally shaped lights
Not considered here
Later: ray-tracing for such light sources

Problem statement

A shadow algorithm for point and directional lights
determines which scene points are

Visible from the light source (l.e. illuminated)
Invisible from the light source (l.e. in shadow)
Thus: shadow casting is a visibility problem!

Wolfgang Heidrich

Types of Shadow Algorithms

Object Space

Like object space visibility algorithms, the method
computes in object space which polygon parts that are
illuminated and which are in shadow

Individual parts are then drawn with different intensity
Typically slow, O(n*2), not for dynamic scenes
Image Space
Determine visibility per pixel in the final image
Sort of like depth buffer
Shadow maps
Shadow volumes

Wolfgang Heidrich

Credits

The following shadow mapping slides are taken from
Mark Kilgard’s OpenGL course at Siggraph 2002.

Wolfgang Heidrich

10

Shadow Mapping
Concept (1)

Depth testing from the light’s
point-of-view
Two pass algorithm
First, render depth buffer from the light’s point-of-view
The result is a “depth map” or “shadow map”

Essentially a 2D function indicating the depth of the
closest pixels to the light

This depth map is used in the second pass

Wolfgang Heidrich

Shadow Mapping
Concept (2)

Shadow determination with the
depth map

Second, render scene from the eye’s point-of-view
For each rasterized fragment

Per’:g[armine fragment’s XYZ position relative to the
9

This light position should be setup to match the
frustum used to create the depth map

Compare the depth value at light position XY in the
depth map to fragment’s light position Z

Wolfgang Heidrich

11

The Shadow Mapping
Concept (3)

The Shadow Map Comparison

Two values
A = Z value from depth map at fragment’s light XY
position
B = Z value of fragment’s XYZ light position

If B is greater than A, then there must be something
closer to the light than the fragment

Then the fragment is shadowed

If A and B are approximately equal,
the fragment is lit

Wolfgang Heidrich

Shadow Mapping
with a Picture in 2D (1)

The A < B shadowed fragment case

= O —
e
’ depth map Z =A
light ®

source T \
A \@ eye

-------- 3 position
U '\

S / depth map image plane

: eye view image plane,
a.k.a. the frame buffer
fragment’s
light Z = Bf

Wolfgang Heidrich

12

Shadow Mapping
with a Picture in 2D (2)

The A = B lit fragment case

S / depth map image plane

20
~0S
i f depthmap Z =A
ight e
source R ©\

eye

L \ position
H eye view image plane,
a.k.a. the frame buffer
fragment's ¢
lightZ=B

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (1)

A scene with fairly complex shadows

the point
light source

Wolfgang Heidrich

13

Visualizing the Shadow
Mapping Technique (2)

Compare with and without shadows

with shadows without shadows

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (3)

The scene from the light’s point-of-view

FYI: from the
eye’s point-of-view
again

Wolfgang Heidrich

14

Visualizing the Shadow
Mapping Technique (4)

The depth buffer from the light’s point-of-
view

FYI: from the
light’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (5)

Projecting the depth map onto the eye’s
view

FYI: depth map for
light’s point-of-view
again

Wolfgang Heidrich

15

Visualizing the Shadow
Mapping Technique (6)

Projecting light’s planar distance onto eye’s
view

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Comparing light distance to light depth map

Green is
where the
light planar Non-green is
distance and where
the light shadows

depth map are should be
approximately
equal

Wolfgang Heidrich

16

Visualizing the Shadow
Mapping Technique (7)

Complete scene with shadows

Notice how Notice how
specular curved
highlights surfaces cast

shadows on
each other

never appear
in shadows

Wolfgang Heidrich

In Practice:
Depth Map Precision Issues

Have to add a little offset to depth map
values to account for limited precision

Too little bias,
everything begins to
shadow

Too much bias, shadow
starts too far back

Wolfgang Heidrich

Just right

17

What is
Projective Texturing?

An intuition for projective texturing
The slide projector analogy

Wolfgang Heidrich

About
Projective Texturing (1)

First, what is perspective-correct texturing?
Normal 2D texture mapping uses (s, t) coordinates
2D perspective-correct texture mapping

Means (s, t) should be interpolated linearly in eye-
space

So compute per-vertex s/w, t/w, and 1/w

Linearly interpolated these three parameters over
polygon

Per-fragment compute s’ = (s/w) / (1/w) and
t'=(t/w)/(1/w)

Results in per-fragment perspective correct (s’, t')

Wolfgang Heidrich

18

About
Projective Texturing (2)

So what is projective texturing?
Now consider homogeneous texture coordinates

(s, t, r,q)-->(s/q, t/q, r/q)

Similar to homogeneous clip coordinates where
(x, y, z, w) = (x/w, y/w, z/w)

Idea is to have (s/q, t/q, r/q) be projected per-fragment

Wolfgang Heidrich

Back to the Shadow
Mapping Discussion. ..

Assign light-space texture coordinates to
polygon vertices

Transform eye-space (x, y, z, w) coordinates to the
light’s view frustum matc ' how the light's depth map is
generated)

Further transform these coordinates to map directly into
the light view’s depth map

Expressible as a projective transform
(s/q, t/q) will map to light's depth map texture

Wolfgang Heidrich

19

Shadow Map Operation

Next Step:

Compare depth map value to distance of fragment from
light source

Different GPU generations support different means of
implementing this

Today’s GPUs: pixel shader!

Earlier: special hardware for implmenting this feature
(e.g. SGI), or just using alpha blending [Heidrich’99]

Wolfgang Heidrich

Issues with Shadow
Mapping (1)

Not without its problems
Prone to aliasing artifacts
‘percentage closer” filtering helps this
normal color filtering does not work well
Depth bias is not completely foolproof

Requires extra shadow map rendering pass and texture
loading

Higher resolution shadow map reduces blockiness
but also increase texture copying expense

Wolfgang Heidrich

20

Hardware Shadow Map
Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heightens filtering artifacts

Wolfgang Heidrich

Issues with Shadow
Mapping (2)

Not without its problems
Shadows are limited to view frustums
could use six view frustums for omni-directional light

Objects outside or crossing the near and far clip planes
are not properly accounted for by shadowing

move near plane in as close as possible

but too close throws away valuable depth map
precision when using a projective frustum

Wolfgang Heidrich

21

More Examples

Complex objects all shadow

Wolfgang Heidrich

More Examples

Even the floor casts shadow

Note shadow
leakage due to
infinitely thin
JSloor

Could be fixed by

giving floor
thickness

Wolfgang Heidrich

22

Combining Projective Texturing for|==
Spotlights

Use a spotlight-style projected texture to
give shadow maps a spotlight falloff

Wolfgang Heidrich

Combining Shadows with
Atmospherics

Shadows in a dusty room

Simulate atmospheric effects such
as suspended dust

1) Construct shadow map
2) Draw scene with shadow map

3) Modulate projected texture
image
with projected shadow map

4) Blend back-to-front shadowed
slicing planes also modulated
by projected texture image

Credit: Cass Everitt

Wolfgang Heidrich

23

Shadow Maps

Approach for shadows from point light
sources

Surface point is in shadow if it is not visible from the
light source

Use depth buffer to test visibility:
Render scene from the point light source
Store resulting depth buffer as texture map

For every fragment generated while rendering from
the camera position, project the fragment into the
depth texture taken from the camera, and check if it
passes the depth test.

Wolfgang Heidrich

Shadow Volumes

Use new buffer: stencil buffer
Just another channel of the framebuffer
Can count how often a pixel is drawn

Algorithm (1):

Generate silhouette polygons for all objects
Polygons starting at silhouette edges of object
Extending away from light source towards infinity
These can be computed in vertex programs

Wolfgang Heidrich

24

Shadow Volumes

File Options

AiRadeon Shader Demo

Image by Ai'l

Wolfgang Heidrich

Shadow Volumes

Algorithm (2):
Render all original geometry into the depth buffer

l.e. do not draw any colors (or only draw ambient
illumination term)

Render front-facing silhouette polygons while
incrementing the stencil buffer for every rendered
fragment

Render back-facin% silhouette polygons while
decrementing the stencil buffer for every rendered

fragment

Draw illuminated geometry where the stencil buffer is 0,
shadow elsewhere

Wolfgang Heidrich

25

Shadow Volumes

Image by ATI N
UBC
Shadow Volumes
Discussion:

Object space method therefore no precision issues
Lots of large polygons: can be slow

High geometry count

Large number of pixels rendered

Wolfgang Heidrich

26

Coming Up:

Friday
Ray-tracing

Next Week:

Global illumination

Wolfgang Heidrich

27

