

Color Constancy

Automatic "white balance" from change in illumination Vast amount of processing behind the scenes!

Colorimetry vs. perception

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers
- Metamer demo:

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

olfgang Heidrich

Color Matching Experiments

Performed in the 1930s

Idea: perceptually based measurement

- Shine given wavelength (λ) on a screen
- User must control three pure lights producing three other wavelengths (say R=700 nm, G=546 nm, and B=438 nm)
- Adjust intensity of RGB until colors are identical

Volfgang Heidrich

Color Matching Experiment

Deculia

- It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda),\,B(\lambda),$ and $C(\lambda)$
- Used monochromatic light at 438, 546, and 700 nanometers
- · Also found the space is linear, I.e. if

$$R(\lambda) \equiv S(\lambda)$$

then

$$R(\lambda) + M(\lambda) \equiv S(\lambda) + M(\lambda)$$

and

$$k \cdot R(\lambda) = k \cdot S(\lambda)$$

olfgang Heidrich

Negative Lobes

UBC

Actually:

 Exact target match possible sometimes requires "negative light"

- Some red has to be added to target color to permit exact match using "knobs" on RGB intensity output
- Equivalent mathematically to removing red from RGB output

Wolfgang Heidrich

Notation

Don't confuse:

- Primaries: the spectra of the three different light sources: R, G, B
 - For the matching experiments, these were monochromatic (l.e. single wavelength) light!
 - Primaries for displays usually have a wider spectrum
- · Coefficients R, G, B
 - Specify how much of R, G, B is in a given color
- Color matching functions: $r(\lambda)$, $g(\lambda)$, $b(\lambda)$
 - Specify how much of \mathbf{R} , \mathbf{G} , \mathbf{B} is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ

Wolfgang Heidrich

Cone Response Functions

Cone Response

For every type of cone (short, medium, long), one can also measure how much it responds to illumination at a given wavelength

Color Matching and Cone Response

Linear Algebra View:

- Space of spectra is infinite-dimensional vector space
 - Dot product between two spectra, S1, S2:

$$(S_1 \cdot S_2) = \int_{\lambda} S_1(\lambda) S_2(\lambda) d\lambda$$

- Cone responses form a 3D subspace
- Matching functions form the same 3D subspace
- Cone resp. and matching fns are dual bases
- Consequence: if the cone resp. overlap and are positive everywhere, they are **not** an orthonormal basis
 - The dual basis (matching functions) then **must** be negative for some wavelengths wortgams Helidric

Negative Lobes

So:

 Can't generate all other wavelengths with any set of three positive monochromatic lights!

Solution

· Convert to new synthetic "primaries" to make the color matching easy

 $\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} = \begin{pmatrix} 2.36460 & -0.51515 & 0.00520 \\ -0.89653 & 1.42640 & -0.01441 \\ -0.46807 & 0.08875 & 1.00921 \end{pmatrix} \begin{pmatrix} \mathbf{R}^{3} \\ \mathbf{G} \\ \mathbf{B}_{1} \end{pmatrix}$

Note:

- R, G, B are the same monochromatic primaries as before
- . The corresponding matching functions x(\(\lambda\), y(\(\lambda\), z(\(\lambda\)) are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

olfgang Heidrich

Matching Functions - CIE Color Space

- CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Wolfgang He

Facts about the CIE

