

Color

Wolfgang Heidrich

Wolfgang Heidrich

Assignment 3 (project)

• Due April 1

Homework 7

Out today

Reading

Chapter 10 (ray tracing)

Course Topics for the Rest of the Term

Color

Today, Friday

Shadows, Ray-tracing & Global Illumination

Next week

Parametric Curves/Surfaces

Wolfgang Heidrich

Color

Wolfgang Heidrich

Electromagnetic Spectrum

Blackbody Radiation

Black body

- Dark material, so that reflection can be neglected
- Spectrum of emitted light changes with temperature
 - This is the origin of the term "color temperature"
 - E.g. when setting a white point for your monitor
 - Cold: mostly infrared
 - Hot: redish
 - Very hot: bluish
- Demo:

http://www.mhhe.com/physsci/astronomy

Physiology of Vision Center of retina is densely packed region called the fovea. Cones much denser here than the periphery 1.35 mm from rentina center 4 4 4 Molfgang Heidrich

Color Constancy

- Automatic "white balance" from change in illumination
- Vast amount of processing behind the scenes!
- Colorimetry vs. perception

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers
- Metamer demo:

http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Color Matching Experiments

Performed in the 1930s

Idea: perceptually based measurement

- Shine given wavelength (λ) on a screen
- User must control three pure lights producing three other wavelengths (say R=700 nm, G=546 nm, and B=438 nm)
- Adjust intensity of RGB until colors are identical

Wolfgang Heidrich

Color Matching Experiment

Results

- It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda)$, $B(\lambda)$, and $C(\lambda)$
 - Used monochromatic light at 438, 546, and 700 nanometers
- Also found the space is linear, I.e. if

$$R(\lambda) \equiv S(\lambda)$$

then

$$R(\lambda) + M(\lambda) \equiv S(\lambda) + M(\lambda)$$

and

$$k \cdot R(\lambda) \equiv k \cdot S(\lambda)$$

Negative Lobes

Actually:

 Exact target match possible sometimes requires "negative light"

- Some red has to be added to target color to permit exact match using "knobs" on RGB intensity output
- Equivalent mathematically to removing red from RGB output

Wolfgang Heidrich

Notation

Don't confuse:

- Primaries: the spectra of the three different light sources: R, G, B
 - For the matching experiments, these were monochromatic (I.e. single wavelength) light!
 - Primaries for displays usually have a wider spectrum
- · Coefficients R, G, B
 - Specify how much of **R**, **G**, **B** is in a given color
- Color matching functions: $r(\lambda)$, $g(\lambda)$, $b(\lambda)$
 - Specify how much of R, G, B is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ

Cone Response Functions

Cone Response

 For every type of cone (short, medium, long), one can also measure how much it responds to illumination at a given wavelength

Wolfgang Heidrich

Color Matching and Cone Response

Linear Algebra View:

- Space of spectra is infinite-dimensional vector space
 - Dot product between two spectra, S1, S2:

$$(S_1 \cdot S_2) = \int_{\lambda} S_1(\lambda) S_2(\lambda) d\lambda$$

- Cone responses form a 3D subspace
- Matching functions form the same 3D subspace
- Cone resp. and matching fns are dual bases
- Consequence: if the cone resp. overlap and are positive everywhere, they are **not** an orthonormal basis
 - The dual basis (matching functions) then must be negative for some wavelengths

Negative Lobes

So:

 Can't generate all other wavelengths with any set of three positive monochromatic lights!

Solution:

Convert to new synthetic "primaries" to make the color matching easy

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} = \begin{pmatrix} 2.36460 & -0.51515 & 0.00520 \\ -0.89653 & 1.42640 & -0.01441 \\ -0.46807 & 0.08875 & 1.00921 \end{pmatrix} \begin{pmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{pmatrix}$$

Note:

- R, G, B are the same monochromatic primaries as before
- The corresponding matching functions x(λ), y(λ), z(λ) are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

Wolfgang Heidrich

Matching Functions - CIE Color Space

• CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Matching Functions - Measured vs. CIE Color Spaces

Measured basis

- Monochromatic lights
- Physical observations
- Negative lobes

Transformed basis

- "imaginary" lights
- All positive, unit area matching functions
- Y is luminance, no hue
- X,Z no luminance

Wolfgang Heidrich

Notation

Don't confuse:

- Synthetic primaries X, Y, Z
 - Contain negative frequencies
 - Do not correspond to visible colors
- Color matching functions $x(\lambda)$, $y(\lambda)$, $z(\lambda)$
 - Are non-negative everywhere
- Coefficients X, Y, Z
- Normalized chromaticity values

$$x = \frac{X}{X+Y+Z}, y = \frac{Y}{X+Y+Z}, z = \frac{Z}{X+Y+Z}$$

Facts about the CIE "Horseshoe" Diagram

- All visible colors lie inside the horseshoe
 - Result from color matching experiments
- Spectral (monochromatic) colors lie around the border
 - The straight line between blue and red contains the purple tones
- Colors combine linearly (I.e. along lines), since the xyplane is a plane from a linear space

Facts about the CIE "Horseshoe" Diagram (cont.)

A point C can be chosen as a white point corresponding to an illuminant

- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (I.e C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (I.e. purples) do not have a dominant wavelength, but their complementary color does

Wolfgang Heidrich

CIE Diagram

- Blackbody curve
- Illumination:
 - Candle 2000K
 - Light bulb 3000K (A)
 - Sunset/ sunrise 3200K
 - Day light 6500K (D)
 - Overcast day 7000K
 - Lightning >20,000K

Additive vs. Subtractive Colors

Additive: light

- Monitors, LCDs
- RGB model

Subtractive: pigment

- Printers
- CMY(K) model

Monitors

Monitors have nonlinear response to input

- Characterize by gamma
 - displayedIntensity = a[₹] (maxIntensity)

Gamma correction

• displayedIntensity = $\left(a^{1/(n)}\right)^{\gamma}$ axIntensity)
= a (maxIntensity)

Gamma for CRTs:

Around 2.4

Wolfgang Heidrich

Coming Up...

Wednesday

Shadows

Friday:

Ray-tracing