

Color

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 3 (project)

Due April 1

Quiz 2

- Wednesday (Mar 9)
- Topics: Rendering pipeline, but no transformations
- No procedural shaders etc. (Gordon Wetzstein lecture)
 - But: this will be on the final

Reading (this week)

Chapter 20 (color)

Reading (this week & next)

Chapter 10 (rav tracing)

Course Topics for the Rest of the Term

Color

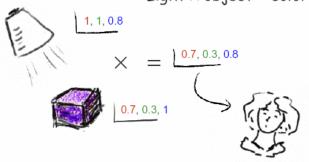
Today, Friday

Shadows, Ray-tracing & Global Illumination

Next week

Parametric Curves/Surfaces

Wolfgang Heidrich


Color

Wolfgang Heidrich

So far in this Course: Simple Model of Color

- Simple model based on RGB triples
- Component-wise multiplication of colors
 - -(a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)Light × object = color

Wolfgang Heidrich

Wolfgang Heidrich

Basics Of Color Elements of color: Perception Reflectance

UBC

Basics of Color

Physics

- Illumination
 - Electromagnetic spectra
- Reflection
 - Material properties
 - Surface geometry and microgeometry (i.e., polished versus matte versus brushed)

Perception

Energy of one photon (electron volts)

- Physiology and neurophysiology
- Perceptual psychology

Wolfgang Heidrich

 10^{-1}

 10^{-4}

Light Sources

Common light sources differ in the kind of spectrum they emit:

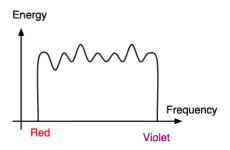
- Continuous spectrum
 - Energy is emitted at all wavelengths
 - Blackbody radiation
 - Tungsten light bulbs
 - Certain fluorescent lights
 - Sunlight
 - Electrical arcs
- Line spectrum
 - Energy is emitted at certain discrete frequencies

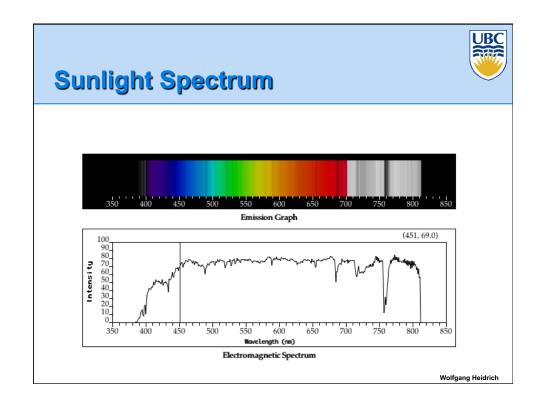
Wolfgang Heidrich

Blackbody Radiation

Black body

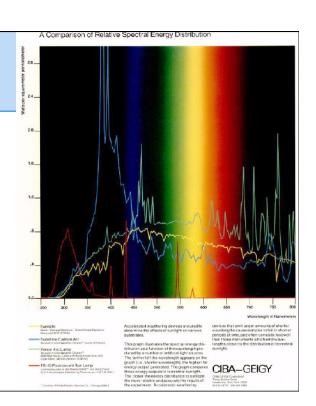
- Dark material, so that reflection can be neglected
- Spectrum of emitted light changes with temperature
 - This is the origin of the term "color temperature"
 - E.g. when setting a white point for your monitor
 - Cold: mostly infrared
 - Hot: redish
 - Very hot: bluish
- Demo:




http://www.mhhe.com/physsci/astronomy

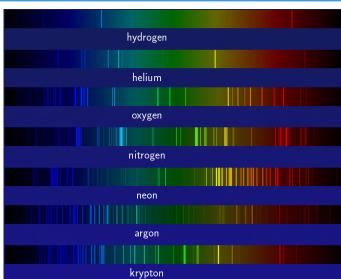
White Light

- Sun or light bulbs emit all frequencies within the visible range to produce what we perceive as the "white light"
- But the exact tone depends on the emitted spectrum



Continuous Spectrum

Example:

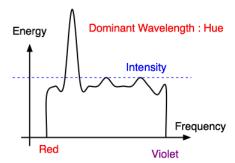

- Sunlight
- Various "daylight" lamps

Line Spectrum

Examples:

- lonized gases
- Lasers
- Some fluorescent lamps

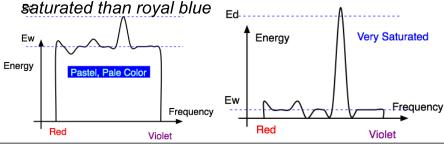
White Light and Color


- When white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
 - But generally, the wavelength of reflected photons remains the same
 - Exceptions: fluorescense, phosphorescense...
- Combination of frequencies present in the reflected light that determines what we perceive as the color of the object

Wolfgang Heidrich

Hue

 Hue (or simply, "color") is dominant wavelength/ frequency

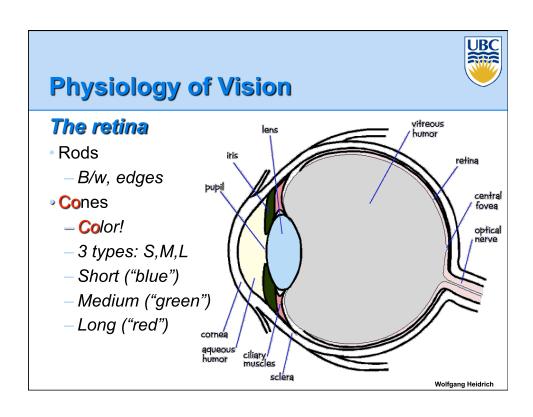


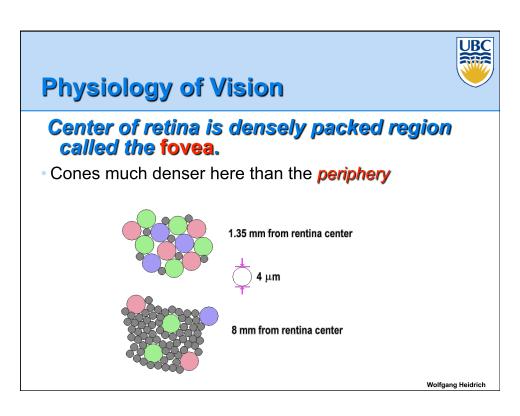
Saturation or Purity of Light

How washed out or how pure the color of the light appears

- Contribution of dominant light vs. other frequencies producing white light
- Saturation: how far is color from grey
 - Pink is less saturated than red, sky blue is less

OBC


Intensity vs. Brightness


Intensity: physical term

 Measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the luminance of the source)

Lightness/brightness: perceived intensity of light

Nonlinear

Perceptual vs. Colorimetric Terms

Perceptual

Colorimetric

Hue

Dominant wavelength

Saturation

Excitation purity

Lightness

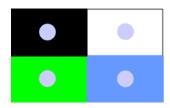
- Luminance
- Reflecting objects
- Brightness

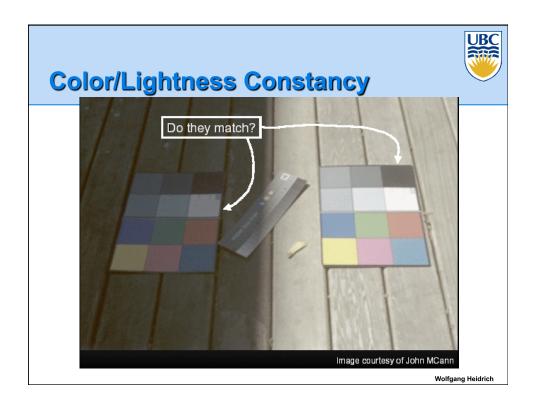
Luminance

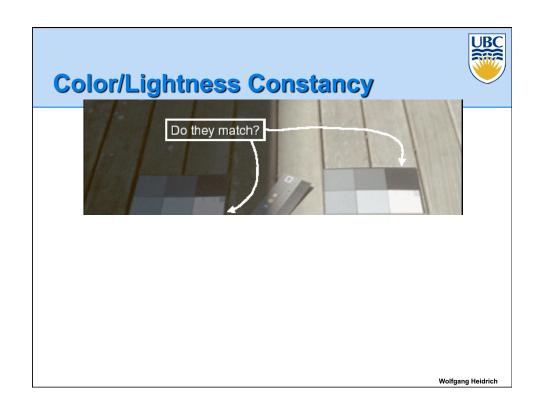
Light sources

Color/Lightness Constancy

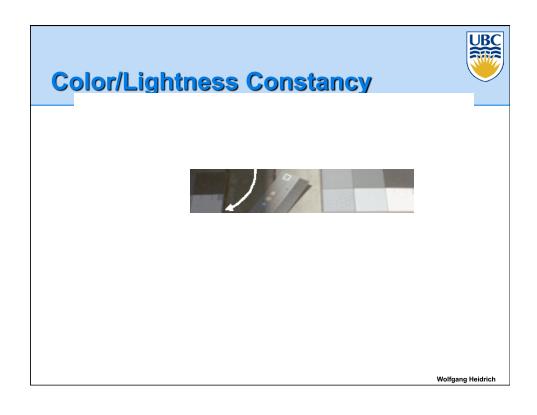
Color perception also depends on surrounding

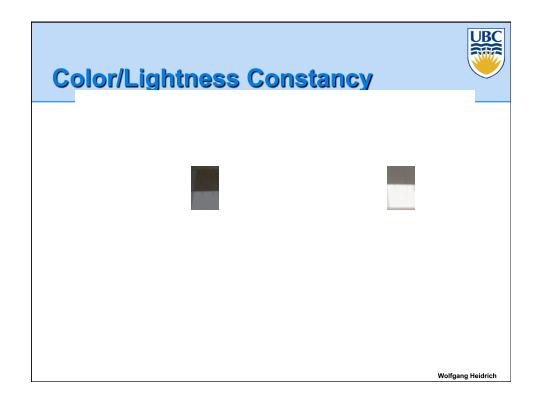

- Colors in close proximity
- Illumination under which the scene is viewed


Adaptation, Surrounding Color


Color perception is also affected by

- Adaptation (move from sunlight to dark room)
- Surrounding color/intensity:
 - Simultaneous contrast effect





Color/Lightness Constancy

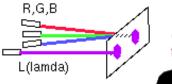
Wolfgang Heidrich

Color Constancy

- Automatic "white balance" from change in illumination
- Vast amount of processing behind the scenes!
- Colorimetry vs. perception

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries
- Colors that look the same but have different spectra are called metamers
- Metamer demo:


http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Wolfgang Heidrich

Color Matching Experiments

Performed in the 1930s

Idea: perceptually based measurement

- Shine given wavelength (λ) on a screen
- User must control three pure lights producing three other wavelengths (say R=700 nm, G=546 nm, and B=438 nm)
- Adjust intensity of RGB until colors are identical

Color Matching Experiment

Results

- It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda)$, $B(\lambda)$, and $C(\lambda)$
 - Used monochromatic light at 438, 546, and 700 nanometers
- · Also found the space is linear, I.e. if

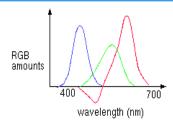
$$R(\lambda) \equiv S(\lambda)$$

then

$$R(\lambda) + M(\lambda) \equiv S(\lambda) + M(\lambda)$$

and

$$k \cdot R(\lambda) \equiv k \cdot S(\lambda)$$


Wolfgang Heidrich

UBC

Negative Lobes

Actually:

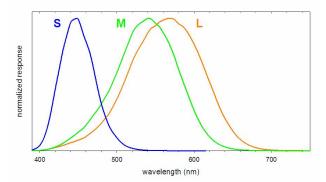
 Exact target match possible sometimes requires "negative light"

- Some red has to be added to target color to permit exact match using "knobs" on RGB intensity output
- Equivalent mathematically to removing red from RGB output

Notation

Don't confuse:

- Primaries: the spectra of the three different light sources: R, G, B
 - For the matching experiments, these were monochromatic (I.e. single wavelength) light!
 - Primaries for displays usually have a wider spectrum
- Coefficients R, G, B
 - Specify how much of **R**, **G**, **B** is in a given color
- Color matching functions: $r(\lambda)$, $g(\lambda)$, $b(\lambda)$
 - Specify how much of R, G, B is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ


Wolfgang Heidrich

Cone Response Functions

Cone Response

 For every type of cone (short, medium, long), one can also measure how much it responds to illumination at a given wavelength

Color Matching and Cone Response

Linear Algebra View:

- Space of spectra is infinite-dimensional vector space
 - Dot product between two spectra, S1, S2:

$$(S_1 \cdot S_2) = \int_{\lambda} S_1(\lambda) S_2(\lambda) d\lambda$$

- Cone responses form a 3D subspace
- Matching functions form the same 3D subspace
- Cone resp. and matching fns are dual bases
- Consequence: if the cone resp. overlap and are positive everywhere, they are **not** an orthonormal basis
 - The dual basis (matching functions) then must be negative for some wavelengths

Negative Lobes

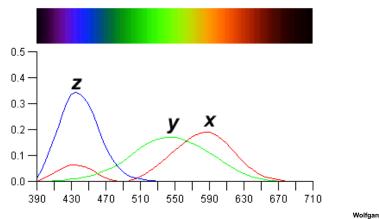
So:

 Can't generate all other wavelengths with any set of three positive monochromatic lights!

Solution:

Convert to new synthetic "primaries" to make the color matching easy

$$\begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \\ \mathbf{Z} \end{pmatrix} = \begin{pmatrix} 2.36460 & -0.51515 & 0.00520 \\ -0.89653 & 1.42640 & -0.01441 \\ -0.46807 & 0.08875 & 1.00921 \end{pmatrix} \begin{pmatrix} \mathbf{R} \\ \mathbf{G} \\ \mathbf{B} \end{pmatrix}$$


Note:

- R, G, B are the same monochromatic primaries as before
- The corresponding matching functions x(\(\lambda\), y(\(\lambda\), z(\(\lambda\)) are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

Matching Functions - CIE Color Space

• CIE defined three "imaginary" lights X, Y, and Z, any wavelength λ can be matched perceptually by positive combinations

Wolfgang Heidrich

Matching Functions Measured vs. CIE Color Spaces Measured vs. Gib Color Spaces In the color space of th

Measured basis

- Monochromatic lights
- Physical observations
- Negative lobes

Transformed basis

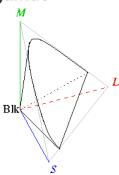
- "imaginary" lights
- All positive, unit area matching functions
- Y is luminance, no hue
- X,Z no luminance

UBC

Notation

Don't confuse:

- Synthetic primaries X, Y, Z
 - Contain negative frequencies
 - Do not correspond to visible colors
- Color matching functions $x(\lambda)$, $y(\lambda)$, $z(\lambda)$
 - Are non-negative everywhere
- Coefficients X, Y, Z
- Normalized chromaticity values


$$x = \frac{X}{X+Y+Z}, y = \frac{Y}{X+Y+Z}, z = \frac{Z}{X+Y+Z}$$

Wolfgang Heidrich

CIE Gamut and λ Chromaticity Diagram

3D gamut

180

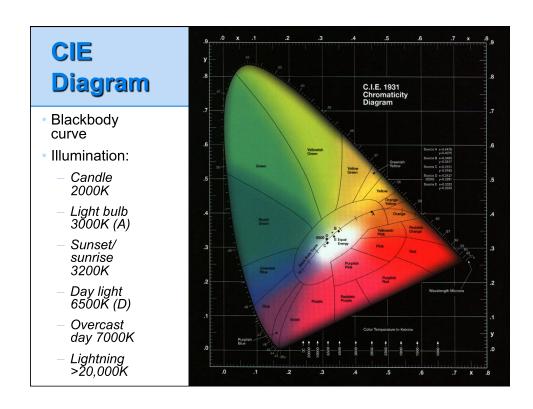
0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

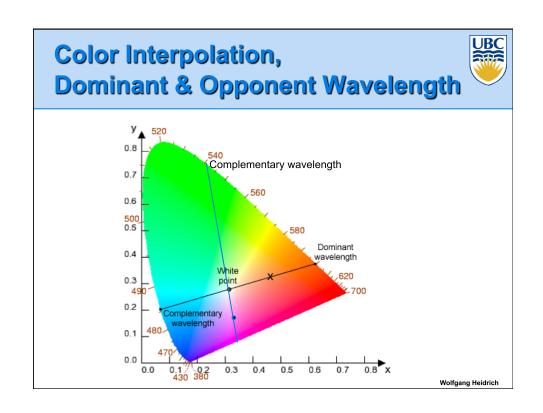
Chromaticity diagram

Hue only, no intensity

Facts about the CIE "Horseshoe" Diagram

- All visible colors lie inside the horseshoe
 - Result from color matching experiments
- Spectral (monochromatic) colors lie around the border
 - The straight line between blue and red contains the purple tones
- Colors combine linearly (I.e. along lines), since the xyplane is a plane from a linear space

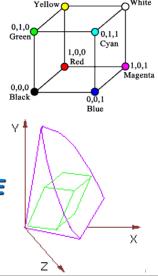

Wolfgang Heidrich


Facts about the CIE "Horseshoe" Diagram (cont.)

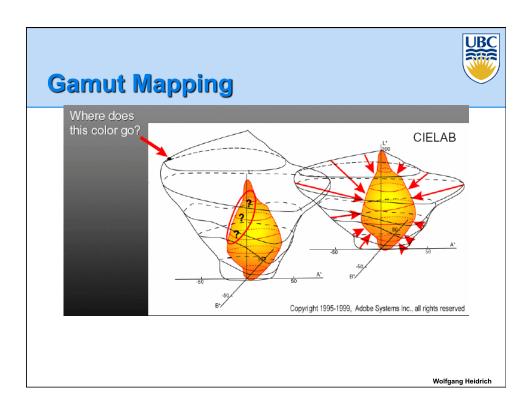
A point C can be chosen as a white point corresponding to an illuminant

- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (I.e C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (I.e. purples) do not have a dominant wavelength, but their complementary color does

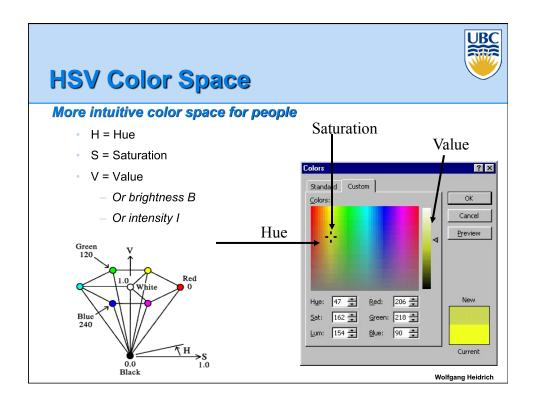
RGB Color Space (Color Cube)



Define colors with (r, g, b) amounts of red, green, and blue


- Used by OpenGL
- Hardware-centric
- Describes the colors that can be generated with specific RGB light sources

RGB color cube sits within CIE


- Subset of perceivable colors
- Scaled, rotated, sheared cube

Device Color Gamuts Use CIE chromaticity diagram to compare the gamuts of various devices X, Y, and Z are hypothetical light sources, not used in practice as device primaries color printer 0.8 film, color monitor 0.4 CIE y 0 0.4 0 0.8 CWEfgang Heidrich

Additive vs. Subtractive Colors Additive: light • Monitors, LCDs • RGB model Subtractive: pigment • Printers • CMY(K) model

Monitors

Monitors have nonlinear response to input

- Characterize by gamma
 - displayedIntensity = a^{γ} (maxIntensity)

Gamma correction

• displayedIntensity = $\left(a^{1/r}\right)^{\gamma}$ axIntensity) = a (maxIntensity)

Gamma for CRTs:

Around 2.4

Coming Up...

Wednesday:

More color, ray-tracing

Friday:

Ray-tracing