Clipping

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 2
Due Monday, Feb 28

Homework 3
Discussed in labs this week

Homework 4

Reading
Chapters 8, 9
Hidden surface removal, shading

Wolfgang Heidrich

The Rendering Pipeline

Line Clipping

Purpose
Originally: 2D

Determine portion of line inside an axis-aligned
rectangle (screen or window)

3D

Determine portion of line inside axis-ligned
parallelpiped (viewing frustum in NDC)

Simple extension to the 2D algorithms

Wolfgang Heidrich

Geometry | || Model/View B |_,| Perspective | | A
Database Transform. 7| Li9nting Transform. Clipping "I
L] Scan L q || Depth L . | Frame-
Conversion exiing Test Blending buffer
Wolfgang Heldrich
Line Clipping
.
/ V= Yinax
window
V=Y min
X=X, X=X

‘min
Wolfgang Heidrich

Line Clipping

Outcodes (Cohen, Sutherland °74)

4 flags encoding position of a point relative to top,
bottom, left, and right boundary

E.g.
OC(p1)=0010 1010 1000 1001
OC(p2)=0000 P3 Vmax

OC(p3)=1001
0010 | 0000 | 0001

Y=Y min
0110 0100 0101

Wolfgang Heidrich

Line Clipping

Line Clipping

Line segment:
(p1,p2)
Trivial cases:
OC(p1)== 0 && OC(p2)==0

Both points inside window, thus line segment
completely visible (trivial accept)

(OC(p1) & OC(p2))!= 0 (i.e. bitwise “and™)

There is (at least) one boundary for which both points
are outside (same flag set in both outcodes)

Thus line segment completely outside window (trivial
reject)

Wolfgang Heidrich

Line Clipping

S
V=Vmax
/
window
Y=Vin
X=X i X Xmax
Line Clipping

a-Clipping
Handling of all the non-trivial cases

Improvement of earlier algorithms (Cohen/Sutherland,
Cyrus/Beck, Liang/Barsky)

Define window-edge-coordinates of a point p=(x,y)”
WEC, (p)= x-x,,,
WECK(p)= X0 -x
WEC(P)= Y-V in
WECHP)= Yyary

Negative if outside!

Wolfgang Heidrich

a-Clipping
Line segment defined as: pl+ a(p2-pl)
Intersection point with one of the borders (say, left):
X +o(x, -x)=x,, <
oo T =N
Xy =X p2
Xonin = %1
(% = x,5,) = (%, = %,,;,) pl
_ WEC, (x,)
"~ WEC, (x,) - WEC, (x,) X=Xy

Wolfgang Heidrich

Line Clipping

Line Clipping

a-Clipping: algorithm

alphaClip(pl, p2, window) {
Determine window-edge-coordinates of p1, p2
Determine outcodes OC(p1), OC(p2)

Handle trivial accept and reject

al=0; // line parameter for first point
a2= 1; // line parameter for second point

Wolfgang Heidrich

a-Clipping: algorithm (cont.)

// now clip point p1 against all edges

if(OC(p1) & LEFT _FLAG) {
a= WEC, (p))/(WEC, (p1) - WEC, (p2));
al=max(al, a);

}

Similarly clip pl against other edges

Wolfgang Heidrich

Line Clipping

a-Clipping: example for clipping p1

Line Clipping

a-Clipping: algorithm (cont.)

// now clip point p2 against all edges

if(OC(p2) & LEFT _FLAG) {
a= WEC, (p2)/(WEC, (p1) - WEC, (p2));
02=min(02, o);

}

Similarly clip pl against other edges

Wolfgang Heidrich

Line Clipping

(1-al)pi+al p2 (1-al)p1+al p2 (1-at)p1+al p2
pl ¢~ pl pl :
J-e2)p1+a2 p2 \&m)pﬁ(ﬂ p2 \k@zmmz p2
P2 p2 P2
left
Start configuration Atter clipping to left After clipping to top
Woltgang Holdrch
Line Clipping
a-Clipping: algorithm (cont.)
// wrap-up
ifal > a2)
no output;
else

output line from pl+al(p2-p1) to pl+a2(p2-pl)
} // end of algorithm

Wolfgang Heidrich

Example

1-02)p1+02 p2 1-02)p1+a2 p2
Ty 2 : P2

v

d «

“-(-a)pt+al p2 pl ‘(1—a1)p1¢a1 p2 pl (1-al)pl+al p2

Line Clipping

Another Example

(1-02)p1+a2 p2..

p2

yp2 (ta2ptva2p2.., (1-02)p1+a2 p2

top top

pl < top py / /
(1-a1)p1tal p2 (1-a1)p1+al p2 (1-al)p14al p2
left left left

Start configuration After clipping p1 After clipping p2

Wolfgang Heidrich

left
Start configuration After clipping p1 After clipping p2
Wolfgang Heldrich
Line Clipping in 3D
Approach:

Clip against parallelpiped in NDC (after perspective
transform)

Means that the clipping volume is always the same!
OpenGL: x,,;,=V,.,= 1
Boundary lines become boundary planes
But outcodes and WECs still work the same way
Additional front and back clipping plane
Z,i=-1, 2,,,=1 in OpenGL

‘max

-1, x,

max:y maX:

Wolfgang Heidrich

Line Clipping

Extensions
Algorithm can be extended to clipping lines against
Arbitrary convex polygons (2D)
Arbitrary convex polytopes (3D)

Wolfgang Heidrich

Line Clipping

Non-convex clipping regions
E.g.: windows in a window system!

Wolfgang Heidrich

Line Clipping

Non-convex clipping regions
Problem: arbitrary number of visible line segments
Different approaches:
Break down polygon into convex parts

Scan convert for full window, and discard hidden
pixels

Wolfgang Heidrich

Polygon Clipping

Objective
2D: clip polygon against rectangular window
Or general convex polygons
Extensions for non-convex or general polygons
3D: clip polygon against parallelpiped
Left, right, top, bottom, near, far planes

Wolfgang Heidrich

Polygon Clipping

Triangles Scan-Converted with Edge
Equations:

Go over each pixel in bounding rectangle
Check if pixel is inside/outside of triangle

Wolfgang Heidrich

Triangle Clipping (w/ Edge
Equation Scan Conversion)

Note:

Once we use edge equations, we no longer really have
to clip the geometry against window boundary!

Instead: clip bounding rectangle against window

Only evaluate edge equations for pixels inside the
window!

Near/far clipping: when interpolating depth values,
?etect whether point is closer than near or farther than
ar

If so, don’t draw it

Wolfgang Heidrich

General Polygon Clipping

Task:
Clipping of general polygons
Convex and concave
Works with other scan conversion algorithms
Independent of edge equations

Wolfgang Heidrich

Polygon Clipping

Not just clipping all boundary lines

May have to introduce new line segments

Wolfgang Heidrich

Polygon Clipping

Classes of Polygons
Triangles
Convex
Concave
Holes and self-intersection

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
Arbitrary convex or concave object polygon
Restriction to triangles does not simplify things
Convex subject polygon (window)

d

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)

Approach: clip object polygon independently against all
edges of subject polygon

< <

<\ ~\

Wolfgang Heidrich

Polygon Clipping

Clipping against one edge:
clipPolygonToEdge(p[n], edge) {
for(i=0;i<n;it++) {
if(p[i] inside edge) {
if(p[i-1] inside edge) // p[-1]= p[n-1]
output p[i];
else {
p= intersect(p[i-1], p[i], edge);
output p, p[i];
}
} else...

Wolfgang Heidrich

Polygon Clipping

Clipping against one edge (cont)

pli] inside: 2 cases

Polygon Clipping

Clipping against one edge (cont)

else { /I p[i] is outside edge
if(p[i-1] inside edge) {
p= intersect(p[i-1], p[I], edge);
output p;
¥
} // end of algorithm

Wolfgang Heidrich

inside outside inside | outside
pli-1]
pli-1]
=
pli]
pli]
Output: pl[i] Output: p, p[i] -
Polygon Clipping

Clipping against one edge (cont)

pli] outside: 2 cases

inside outside inside | outside

.\Q pli]

"N

pli-1]

Output: p Output:nothing

Wolfgang Heidrich

Polygon Clipping

Example

inside outside

p p6 5
p3®<: 24

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm
Inside/outside tests: outcodes

Intersection of line segment with edge: window-edge
coordinates

Similar to Cohen/Sutherland algorithm for line clipping

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm
Discussion:
Works for concave polygons
But generates degenerate cases

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm
Discussion:
Clipping against individual edges independent
Great for hardware (pipelining)
All vertices required in memory at the same time
Not so good, but unavoidable

Another reason for using triangles only in hardware
rendering

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm
For Rendering Pipeline:

Re-triangulate resulting polygon
(can be done for every individual clipping edge)

<

Wolfgang Heidrich

Polygon Clipping

Other Polygon Clipping Algorithms
Weiler/Aetherton '77:

Arbitrary concave polygons with holes both as
subject and as object polygon

Vatti '92:
Self intersection allowed as well

... many more
Improved handling of degenerate cases
But not often used in practice due to high complexity

Wolfgang Heidrich

Occlusion

For most interesting scenes, some polygons overlap

= | %

To render the correct image, we need to determine
which polygons occlude which

Wolfgang Heidrich

Painter’s Algorithm

Simple: render the polygons from back to front,
“painting over” previous polygons

= Q&

Draw cyan, then green, then red
will this work in the general case?

Wolfgang Heidrich

Painter’s Algorithm: Problems

- Intersecting polygons present a problem

Even non-intersecting polygons can form a cycle with
no valid visibility order:

Wolfgang Heidrich

Hidden Surface Removal

Object Space Methods:
Work in 3D before scan conversion
E.g. Painter’s algorithm
Usually independent of resolution

Important to maintain independence of output device
(screen/printer etc.)

Image Space Methods:

Work on per-pixel/per fragment basis after scan
conversion

Z-Buffer/Depth Buffer
Much faster, but resolution dependent

Wolfgang Heidrich

The Z-Buffer Algorithm

What happens if multiple primitives occupy the same
pixel on the screen?

Which is allowed to paint the pixel?

Wolfgang Heidrich

The Z-Buffer Algorithm

Idea: retain depth after projection transform
Each vertex maintains z coordinate
Relative to eye point
Can do this with canonical viewing volumes

Wolfgang Heidrich

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer
Also called depin buffer
Stores z value at each pixel
At frame beginning, initialize all pixel depths to «

When scan converting: interpolate depth (z) across
polygon

Check z-buffer before storing pixel color in
framebuffer and storing depth in z-buffer

don’t write pixel if its z value is more distant than
the z value already stored there

Wolfgang Heidrich

Z-Buffer

Store (r,g,b,z) for each pixel
typically 8+8+8+24 bits, can be more

for all i,j {
Depth[i,j] = MAX DEPTH
Image[i,j] = BACKGROUND_ COLOUR
}
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,j]) {
Image[i,j] = C_pixel
Depth[i,j] = Z_pixel
}
}
}

Wolfgang Heidrich

Interpolating Z

Edge walking

Just interpolate Z along edges and across spans
Barycentric coordinates

Interpolate z like other

parameters

E.g. color X
voag }
L

Wolfgang Heidrich

The Z-Buffer Algorithm (mid-70’s)

History:
Object space algorithms were proposed when
memory was expensive

First 512x512 framebuffer was >$50,000!

Radical new approach at the time

The big idea:
Resolve visibility independently at each pixel

Wolfgang Heidrich

Depth Test Precision

Therefore, depth-buffer essentially stores 1/z,
rather than z!

Issue with integer depth buffers
High precision for near objects
Low precision for far objects

ZNpC

I [
-f “Zeye

Depth Test Precision

Reminder: projective transformation maps eye-
space z to generic z-range (NDC)

Simple example:

X 1 0 0 O0][x
y 0 1 0 Offly
T = .
z 0 0 a b||z
1 0 0 -1 0|1
Thus: a-z,, +b b
Zype = =a+——
eye Zeye

Wolfgang Heidrich

Depth Test Precision

Low precision can lead to depih fighting for far objects
Two different depths in eye space get mapped to
same depth in framebuffer
Which object “wins” depends on drawing order and
scan-conversion

Gets worse for larger ratios f:n
Rule of thumb: f:n < 1000 for 24 bit depth buffer

With 16 bits cannot discern millimeter differences

in objects at 1 km distance

Wolfgang Heidrich

Wolfgang Heidrich

Z-Buffer Algorithm Questions

How much memory does the Z-buffer use?

Does the image rendered depend on the drawing
order?

Does the time to render the image depend on the
drawing order?

How does Z-buffer load scale with visible polygons?
with framebuffer resolution?

Wolfgang Heidrich

Z-Buffer Pros

Simple!!!
Easy to implement in hardware

Hardware support in all graphics cards today
Polygons can be processed in arbitrary order
Easily handles polygon interpenetration

Wolfgang Heidrich

Z-Buffer Cons

Poor for scenes with high depth complexity

Need to render all polygons, even if
most are invisible

eye

Shared edges are handled inconsistently
Ordering dependent

Wolfgang Heidrich

Object Space Algorithms

Determine visibility on object or polygon
level
Using camera coordinates
Resolution independent
Explicitly compute visible portions of polygons
Early in pipeline
After clipping
Requires depth-sorting
Painter’s algorithm
BSP trees

Wolfgang Heidrich

Z-Buffer Cons

Requires lots of memory
(e.g. 1280x1024x32 bits)
Requires fast memory
Read-Modify-Write in inner loop
Hard to simulate transparent polygons

We throw away color of polygons behind closest
one

Works if polygons ordered back-to-front

Extra work throws away much of the speed
advantage

Wolfgang Heidrich

Object Space Visibility Algorithms

Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the fragments
to a display:

Wolfgang Heidrich

Object Space Visibility Algorithms

Object Space Visibility Algorithms

What is the minimum worst-case cost of
computing the fragments for a scene
composed of n polygons?

Answer:
0O(n?)

Wolfgang Heidrich

So, for about a decade (late 60s to late 70s) there was
intense interest in finding efficient algorithms for hidden
surface rermoval
We'll talk about one:
—Binary Space Partition (BSP) Trees
Still in use today for ray-tracing, and in combination
with z-buffer

Wolfgang Heidrich

10

Binary Space Partition Trees (1979)

Creating BSP Trees: Objects

BSP Tree: partition space with binary tree of
planes

Idea: divide space recursively into half-spaces by
choosing splitting planes that separate objects in scene

Preprocessing: create binary tree of planes

Runtime: correctly traversing this tree enumerates
objects from back to front

®
® ﬁﬁﬁ

Creating BSP Trees: Objects

Creating BSP Trees: Objects

®
é w® 666£§;Ei
®t s

Creating BSP Trees: Objects

Creating BSP Trees: Objects

11

Splitting Objects

No bunnies were harmed in previous
example

But what if a splitting plane passes through
an object?

Split the object; give half to each node

: AN
®-J

Wolfgang Heidrich

Traversing BSP Trees

Tree creation independent of viewpoint

Preprocessing step
Tree traversal uses viewpoint
Runtime, happens for many different viewpoints

Each plane divides world into near and far

For given viewpoint, decide which side is near and which is far

Check which side of plane viewpoint is on independently for each tree

vertex

Tree traversal differs depending on viewpoint!
Recursive algorithm

Recurse on far side

Draw object

Recurse on near side

Wolfgang Heidrich

Traversing BSP Trees

renderBSP (BSPtree *T)

BSPtree *near, *far;

if (eye on left side of T->plane)
near = T->left; far = T->right;

else
near = T->right; far = T->left;

renderBSP (far) ;

if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

Wolfgang Heidrich

BSP Trees : Viewpoint A

e
8 Sk
S %

Wolfgang Heidrich

Wolfgang Heidrich

decide independently at
tree vertex

not just left or right child!

Wolfgang Heidrich

12

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

13

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint B

BSP Trees : Viewpoint A

BSP Trees : Viewpoint A

BSP Trees : Viewpoint B

14

BSP Tree Traversal: Polygons BSP Demo
Split along the plane defined by any polygon from scene Useful demo:
Classify all polygons into positive or negative half-space nito://symbolcrait. corn/graphics/bsp

of the plane
If a polygon intersects plane, split polygon into two

and classify them both \ &

Recurse down the negative half-space
Recurse down the positive half-space

\
i
X
‘_

Summary: BSP Trees Coming Up:

Pros: After Reading Week
Simple, elegant scheme More hidden surface removal
Correct version of painter’s algorithm back-to-front Blending

rendering approach

Texture mapping
Sti)ll very popular for video games (but getting less
S0

Cons:
Slow(ish) to construct tree: O(n log n) to split, sort

Splitting increases polygon count: O(n2) worst-
case

Computationally intense preprocessing stage
restricts algorithm to static scenes

Wolfgang Heidrich Wolfgang Heidrich

