

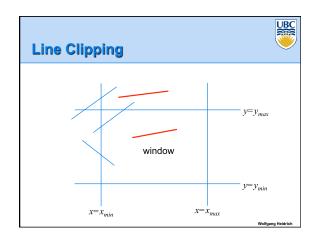
Line Clipping

Line segment:

• (p1,p2)

Trivial cases:

- \circ OC(p1)== 0 && OC(p2)==0
- Both points inside window, thus line segment completely visible (trivial accept)
- (OC(p1) & OC(p2))!= 0 (i.e. bitwise "and"!)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial



Line Clipping

α-Clipping

- · Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/Sutherland, Cyrus/Beck, Liang/Barsky)
- Define <u>window-edge-coordinates</u> of a point $\mathbf{p} = (x,y)^T$
 - $WEC_L(\mathbf{p}) = x x_{min}$
- $WEC_R(\mathbf{p}) = x_{max} x$
- $WEC_B(\mathbf{p}) = y y_{min}$

Negative if outside!

 $WEC_T(\mathbf{p}) = y_{max} - y$

Line Clipping

α-Clipping

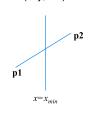
- Line segment defined as: p1+ α (p2-p1)
- Intersection point with one of the borders (say, left):

$$x_{1} + \alpha(x_{2} - x_{1}) = x_{min} \Leftrightarrow$$

$$\alpha = \frac{x_{min} - x_{1}}{x_{2} - x_{1}}$$

$$= \frac{x_{min} - x_{1}}{(x_{2} - x_{min}) - (x_{1} - x_{min})}$$

$$= \frac{\text{WEC}_{L}(x_{1})}{\text{WEC}_{L}(x_{1}) - \text{WEC}_{L}(x_{2})}$$



Line Clipping

α-Clipping: algorithm

alphaClip(p1, p2, window) {

Determine window-edge-coordinates of p1, p2

Determine outcodes OC(p1), OC(p2)

Handle trivial accept and reject

 $\alpha 1 = 0$; // line parameter for first point

 $\alpha 2=1$; // line parameter for second point

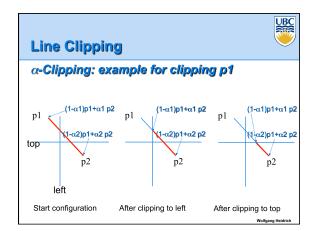
Line Clipping

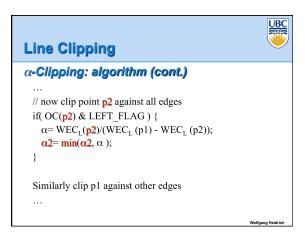
 α -Clipping: algorithm (cont.)

// now clip point p1 against all edges

if(OC(p1) & LEFT_FLAG) { α = WEC_L(p1)/(WEC_L(p1) - WEC_L(p2)); $\alpha 1 = \max(\alpha 1, \alpha);$

Similarly clip p1 against other edges





```
Line Clipping

\alpha-Clipping: algorithm (cont.)

...

// wrap-up

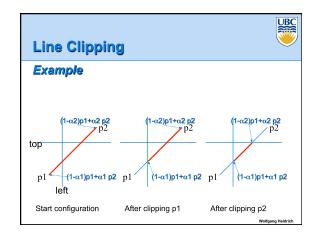
if(\alpha1 > \alpha2 )

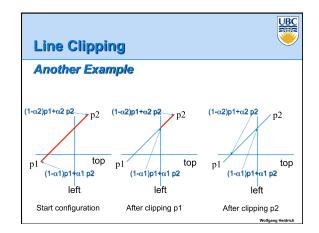
no output;

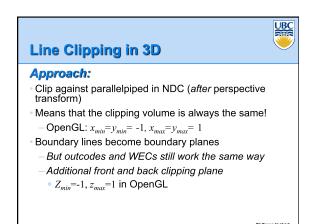
else

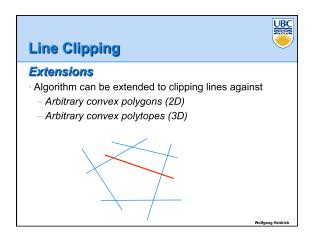
output line from p1+\alpha1(p2-p1) to p1+\alpha2(p2-p1)

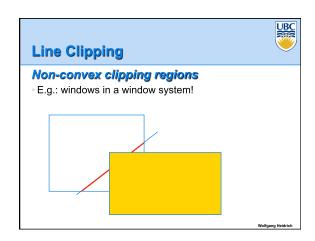
} // end of algorithm
```

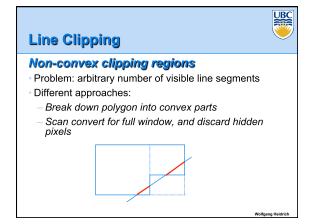


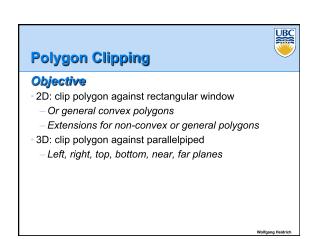


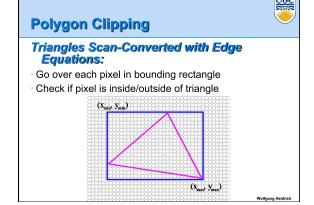


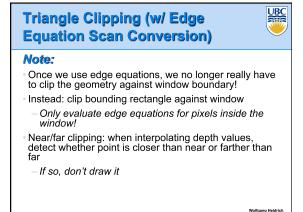


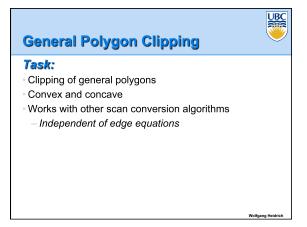


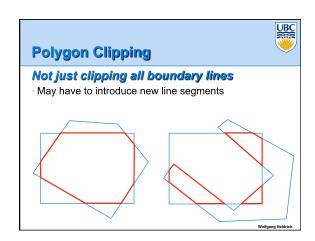


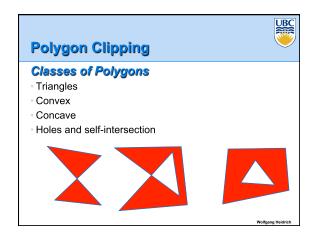


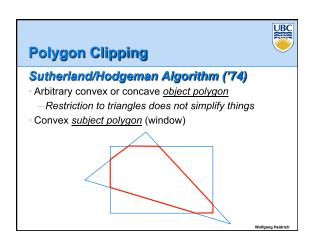


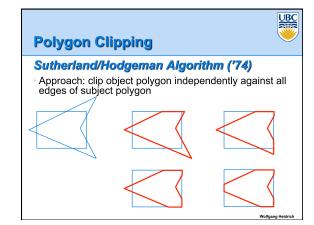


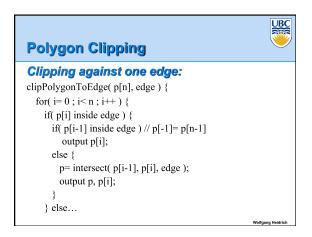




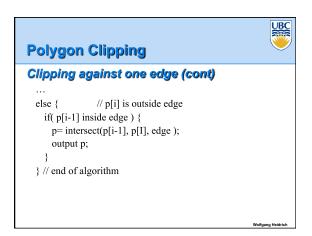


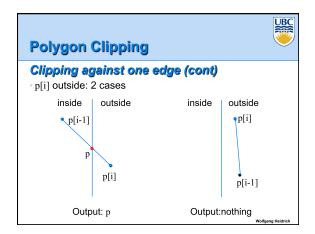


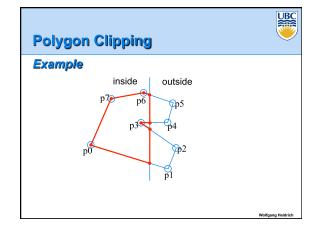




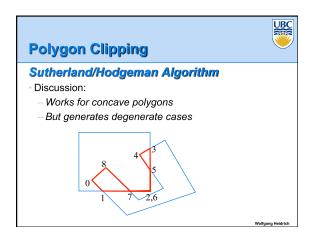








Polygon Clipping Sutherland/Hodgeman Algorithm Inside/outside tests: outcodes Intersection of line segment with edge: window-edge coordinates Similar to Cohen/Sutherland algorithm for line clipping

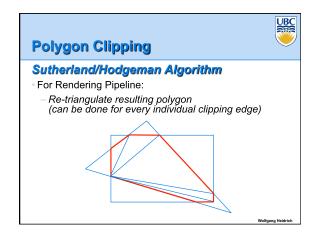


Polygon Clipping

Sutherland/Hodgeman Algorithm

- Discussion:
 - Clipping against individual edges independent
 - Great for hardware (pipelining)
 - All vertices required in memory at the same time
 - Not so good, but unavoidable
 - Another reason for using triangles only in hardware rendering

Volfgang Heidrich



Polygon Clipping

Other Polygon Clipping Algorithms

- · Weiler/Aetherton '77:
- Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti '92:
 - Self intersection allowed as well
- · ... many more
 - Improved handling of degenerate cases
- But not often used in practice due to high complexity

Wolfgang Heidrich

Occlusion

For most interesting scenes, some polygons overlap

 To render the correct image, we need to determine which polygons occlude which

Wolfgang Heidrich

Painter's Algorithm

 Simple: render the polygons from back to front, "painting over" previous polygons

Draw cyan, then green, then red

will this work in the general case?

Molfmann Heidrich

Painter's Algorithm: Problems

- Intersecting polygons present a problem
- Even non-intersecting polygons can form a cycle with no valid visibility order:

Wolfgang Heid

Hidden Surface Removal

Object Space Methods:

- Work in 3D before scan conversion
- E.g. Painter's algorithm
- Usually independent of resolution
 - Important to maintain independence of output device (screen/printer etc.)

Image Space Methods:

- Work on per-pixel/per fragment basis after scan conversion
- · Z-Buffer/Depth Buffer
- · Much faster, but resolution dependent

Volfgang Heidrich

The Z-Buffer Algorithm What happens if multiple primitives occupy the same pixel on the screen? Which is allowed to paint the pixel?

The Z-Buffer Algorithm

Idea: retain depth after projection transform

- · Each vertex maintains z coordinate
- Relative to eye point
- Can do this with canonical viewing volumes

Wolfgang Heidrich

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer

- Also called depth buffer
- Stores z value at each pixel
- $\, \bullet \,$ At frame beginning, initialize all pixel depths to $\infty \,$
- When scan converting: interpolate depth (z) across polygon
- Check z-buffer before storing pixel color in framebuffer and storing depth in z-buffer
- don't write pixel if its z value is more distant than the z value already stored there

Wolfgang Heidrich

Z-Buffer

Store (r,g,b,z) for each pixel

typically 8+8+8+24 bits, can be more
for all i,j {
 Depth[i,j] = MAX_DEPTH
 Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
 for all pixels in P {
 if (Z_pixel < Depth[i,j]) {
 Image[i,j] = C_pixel
 Depth[i,j] = Z_pixel
 }
}</pre>

Wolfgang Heidric

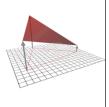
Interpolating Z

Edge walking

Just interpolate Z along edges and across spans

Barycentric coordinates

- Interpolate z like other parameters
- E.g. color



Wolfgang Heidrich

The Z-Buffer Algorithm (mid-70's)

History:

- Object space algorithms were proposed when memory was expensive
- First 512x512 framebuffer was >\$50,000!

Radical new approach at the time

- The big idea:
- Resolve visibility independently at each pixel

Wolfgang Heidric

Depth Test Precision

- Reminder: projective transformation maps eyespace z to generic z-range (NDC)
- Simple example:

Thus:

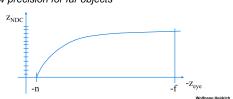
$$T\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

 $z_{NDC} = \frac{a z_{eye} + b}{z_{eye}} = a + \frac{b}{z_{eye}}$

Wolfgang Heidrich

Depth Test Precision

- Therefore, depth-buffer essentially stores 1/z, rather than z!
- Issue with integer depth buffers
- High precision for near objects
- Low precision for far objects



Depth Test Precision

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object "wins" depends on drawing order and scan-conversion
- Gets worse for larger ratios f:n
 - Rule of thumb: $f:n \le 1000$ for 24 bit depth buffer
- With 16 bits cannot discern millimeter differences in objects at 1 km distance

Wolfgang Heidrich

Z-Buffer Algorithm Questions

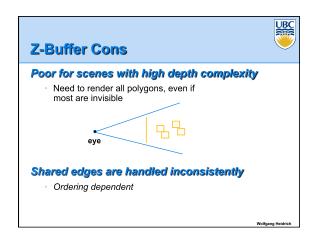
- · How much memory does the Z-buffer use?
- Does the image rendered depend on the drawing order?
- Does the time to render the image depend on the drawing order?
- How does Z-buffer load scale with visible polygons? with framebuffer resolution?

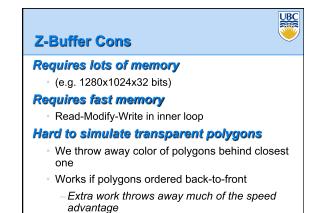
olfmann Heidrich

Z-Buffer Pros

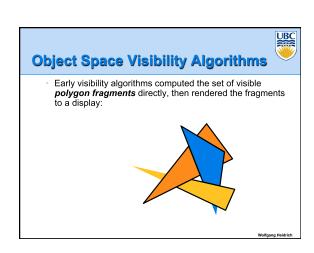
- Simple!!!
- Easy to implement in hardware
 - Hardware support in all graphics cards today
- · Polygons can be processed in arbitrary order
- Easily handles polygon interpenetration

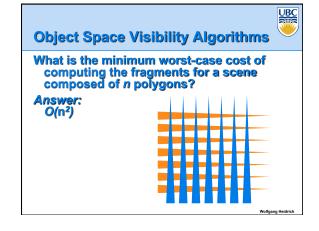
Wolfgang Heidr

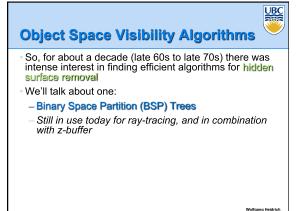




Object Space Algorithms Determine visibility on object or polygon level Using camera coordinates Resolution independent Explicitly compute visible portions of polygons Early in pipeline After clipping Requires depth-sorting Painter's algorithm BSP trees





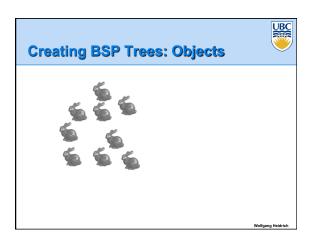


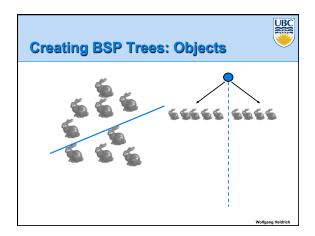
Binary Space Partition Trees (1979)

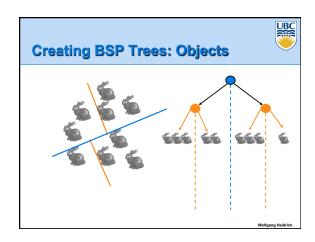
BSP Tree: partition space with binary tree of planes

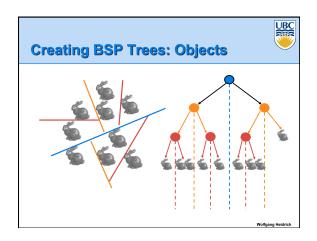
- Idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- Preprocessing: create binary tree of planes
- Runtime: correctly traversing this tree enumerates objects from back to front

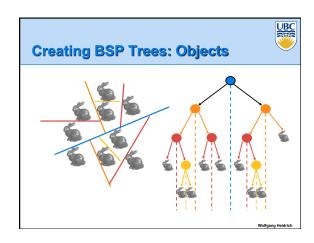
Volfgang Heidrich

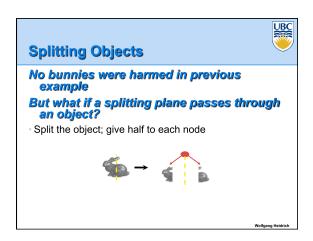






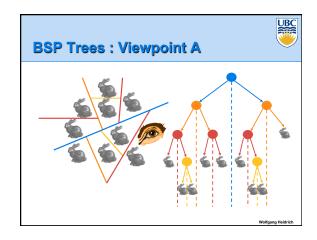


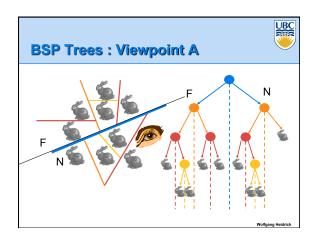


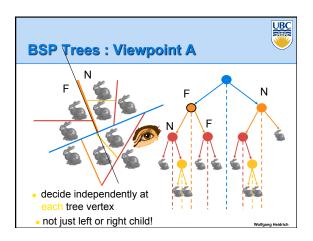


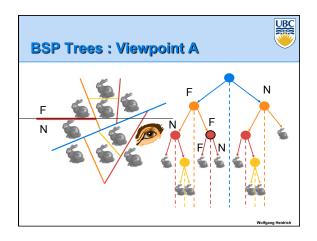
Traversing BSP Trees

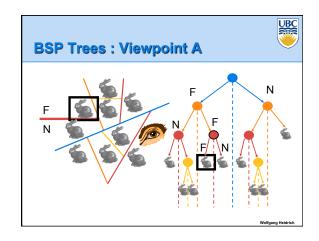
renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
 near = T->left; far = T->right;
else
 near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)
 renderObject(T)
renderBSP(near);

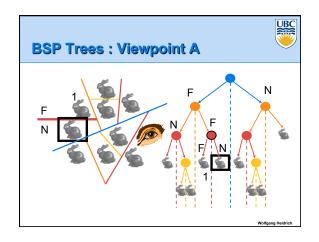


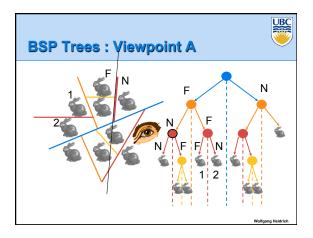


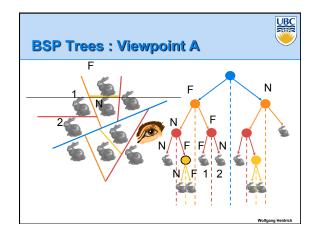


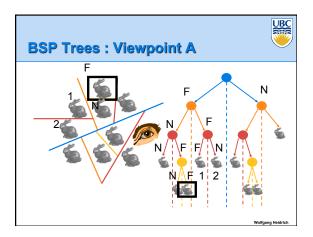


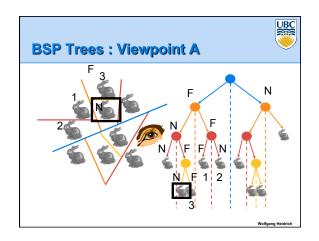


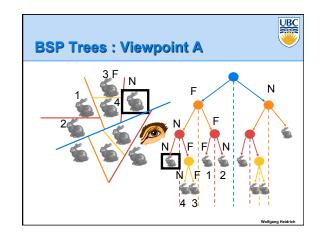


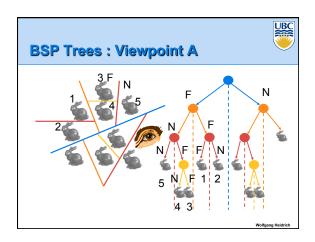


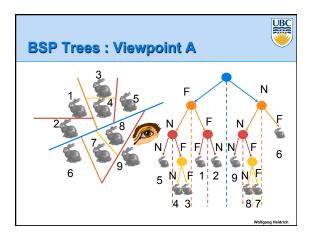


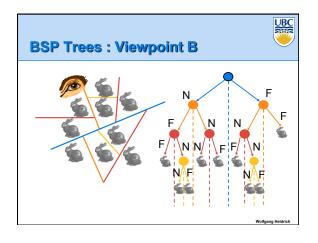


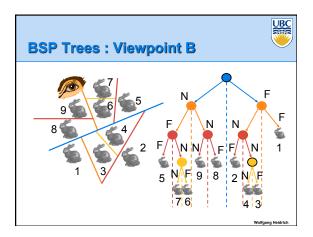




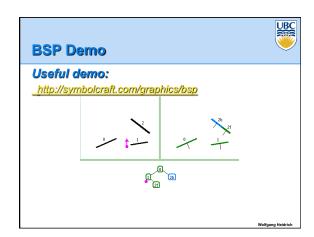








- Classify all polygons into positive or negative half-space of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space



Summary: BSP Trees

- Simple, elegant scheme
- Correct version of painter's algorithm back-to-front rendering approach
- Still very popular for video games (but getting less so)

- Slow(ish) to construct tree: O(n log n) to split, sort
- Splitting increases polygon count: O(n2) worst-
- Computationally intense preprocessing stage restricts algorithm to static scenes

Coming Up:

After Reading Week

- More hidden surface removal
- Blending
- Texture mapping