

Occlusion / Hidden Surface Removal / Depth Test

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 2

Due Monday, Feb 28

Homework 3

Discussed in labs this week

Homework 4

Reading

- Chapters 8, 9
- Hidden surface removal, shading

Course News

More Travel

- Conference Monday/Wednesday after reading week
 - Feb 21: Anika will talk about clipping
 - Feb 23: PhD student Gordon Wetzstein will talk about procedural shading hardware on modern GPUs
 - I will be back Friday morning for the Feb 25 lecture

Today:

 Change of plans – hidden surface removal / visibility rather than clipping

Occlusion

For most interesting scenes, some polygons overlap

 To render the correct image, we need to determine which polygons occlude which

Wolfgang Heidrich

Painter's Algorithm

 Simple: render the polygons from back to front, "painting over" previous polygons

Draw cyan, then green, then red

will this work in the general case?

Painter's Algorithm: Problems

- Intersecting polygons present a problem
- Even non-intersecting polygons can form a cycle with no valid visibility order:

Wolfgang Heidrich

Hidden Surface Removal

Object Space Methods:

- Work in 3D before scan conversion
 - E.g. Painter's algorithm
- Usually independent of resolution
 - Important to maintain independence of output device (screen/printer etc.)

Image Space Methods:

- Work on per-pixel/per fragment basis after scan conversion
- Z-Buffer/Depth Buffer
- Much faster, but resolution dependent

The Z-Buffer Algorithm

- What happens if multiple primitives occupy the same pixel on the screen?
- Which is allowed to paint the pixel?

Wolfgang Heidrich

The Z-Buffer Algorithm

Idea: retain depth after projection transform

- Each vertex maintains z coordinate
 - Relative to eye point
- Can do this with canonical viewing volumes

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer

- Also called depth buffer
- Stores z value at each pixel
- At frame beginning, initialize all pixel depths to ∞
- When scan converting: interpolate depth (z) across polygon
- Check z-buffer before storing pixel color in framebuffer and storing depth in z-buffer
- don't write pixel if its z value is more distant than the z value already stored there

Wolfgang Heidrich

Z-Buffer

Store (r,g,b,z) for each pixel

typically 8+8+8+24 bits, can be more

```
for all i,j {
  Depth[i,j] = MAX_DEPTH
  Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
  for all pixels in P {
    if (Z_pixel < Depth[i,j]) {
        Image[i,j] = C_pixel
        Depth[i,j] = Z_pixel
    }
  }
}</pre>
```


Interpolating Z

Edge walking

Just interpolate Z along edges and across spans

Barycentric coordinates

- Interpolate z like other parameters
- · E.g. color

Wolfgang Heidrich

The Z-Buffer Algorithm (mid-70's)

History:

- Object space algorithms were proposed when memory was expensive
- First 512x512 framebuffer was >\$50,000!

Radical new approach at the time

- The big idea:
 - Resolve visibility independently at each pixel

Depth Test Precision

- Reminder: projective transformation maps eyespace z to generic z-range (NDC)
- Simple example:

$$T \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Thus:

$$z_{NDC} = \frac{a \cdot z_{eye} + b}{z_{eye}} = a + \frac{b}{z_{eye}}$$

Wolfgang Heidrich

Depth Test Precision

- Therefore, depth-buffer essentially stores 1/z, rather than z!
- Issue with integer depth buffers
 - High precision for near objects
 - Low precision for far objects

Depth Test Precision

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object "wins" depends on drawing order and scan-conversion
- Gets worse for larger ratios f:n
 - Rule of thumb: f:n < 1000 for 24 bit depth buffer
- With 16 bits cannot discern cm differences in objects at 1 km distance

Wolfgang Heidrich

Z-Buffer Algorithm Questions

- How much memory does the Z-buffer use?
- Does the image rendered depend on the drawing order?
- Does the time to render the image depend on the drawing order?
- How does Z-buffer load scale with visible polygons?
 with framebuffer resolution?

Z-Buffer Pros

- Simple!!!
- Easy to implement in hardware
 - Hardware support in all graphics cards today
- Polygons can be processed in arbitrary order
- Easily handles polygon interpenetration

Wolfgang Heidrich

Z-Buffer Cons

Poor for scenes with high depth complexity

 Need to render all polygons, even if most are invisible

Shared edges are handled inconsistently

Ordering dependent

Z-Buffer Cons

Requires "lots" of memory

• (e.g. 1280x1024x32 bits)

Requires fast memory

Read-Modify-Write in inner loop

Hard to simulate transparent polygons

- We throw away color of polygons behind closest one
- Works if polygons ordered back-to-front
 - Extra work throws away much of the speed advantage

Wolfgang Heidrich

Object Space Algorithms

Determine visibility on object or polygon level

Using camera coordinates

Resolution independent

Explicitly compute visible portions of polygons

Early in pipeline

After clipping

Requires depth-sorting

- Painter's algorithm
- BSP trees

Object Space Visibility Algorithms

 Early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:

Wolfgang Heidrich

Object Space Visibility Algorithms

What is the minimum worst-case cost of computing the fragments for a scene composed of *n* polygons?

Answer: O(n²)

Object Space Visibility Algorithms

- So, for about a decade (late 60s to late 70s) there was intense interest in finding efficient algorithms for hidden surface removal
- We'll talk about one:
 - Binary Space Partition (BSP) Trees
 - Still in use today for ray-tracing, and in combination with z-buffer

Wolfgang Heidrich

UBC

Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of planes

- Idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- Preprocessing: create binary tree of planes
- Runtime: correctly traversing this tree enumerates objects from back to front

Splitting Objects

No bunnies were harmed in previous example

But what if a splitting plane passes through an object?

Split the object; give half to each node

Traversing BSP Trees

Tree creation independent of viewpoint

Preprocessing step

Tree traversal uses viewpoint

Runtime, happens for many different viewpoints

Each plane divides world into near and far

- · For given viewpoint, decide which side is near and which is far
 - Check which side of plane viewpoint is on independently for each tree vertex
 - Tree traversal differs depending on viewpoint!
- Recursive algorithm
 - Recurse on far side
 - Draw object
 - Recurse on near side

Wolfgang Heidrich

Traversing BSP Trees

```
renderBSP(BSPtree *T)
BSPtree *near, *far;
if (eye on left side of T->plane)
    near = T->left; far = T->right;
else
    near = T->right; far = T->left;
renderBSP(far);
if (T is a leaf node)
    renderBSP(near);
```


BSP Tree Traversal: Polygons

- Split along the plane defined by any polygon from scene
- Classify all polygons into positive or negative half-space of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space

BSP Demo

Useful demo:

http://symbolcraft.com/graphics/bsp

Wolfgang Heidrich

Summary: BSP Trees

Pros:

- Simple, elegant scheme
- Correct version of painter's algorithm back-to-front rendering approach
- Still very popular for video games (but getting less so)

Cons:

- Slow(ish) to construct tree: O(n log n) to split, sort
- Splitting increases polygon count: O(n²) worstcase
- Computationally intense preprocessing stage restricts algorithm to static scenes

Coming Up:

Next week:

Reading week

Week after:

• Feb 21: Clipping (Anika)

• Feb 23: Programmable GPUs (Gordon)

• Feb 25: Blending (me)