

Shading Clipping

Wolfgang Heidrich

Wolfgang Heidrig

Course News

Assignment 2

Due Monday, Feb 28

Homework 3

Discussed in labs this week

Homework 4

Reading

- · Chapters 8, 9
- Hidden surface removal, shading

Shading

Input to Scan Conversion:

- Vertices of triangles (lines, quadrilaterals...)
- Color (per vertex)
 - Specified with glColor
 - Or: computed with lighting
- World-space normal (per vertex)
 - Left over from lighting stage

Shading Task:

Determine color of every pixel in the triangle

Shading

How can we assign pixel colors using this information?

- Easiest: flat shading
 - Whole triangle gets one color (color of 1st vertex)
- Better: Gouraud shading
 - Linearly interpolate color across triangle
- Even better:
 - Linearly interpolate the normal vector
 - Compute lighting for every pixel
 - Note: not supported by rendering pipeline as discussed so far

Wolfgang Heidrich

Flat Shading

 Simplest approach calculates illumination at a single point for each polygon

Obviously inaccurate for smooth surfaces

If an object really <u>is</u> faceted, is this accurate?

Wolfgang Heidrich

Flat Shading Approximations

If an object really <u>is</u> faceted, is this accurate?

no!

- For point sources, the direction to light varies across the facet
- For specular reflectance, direction to eye varies across the facet

Improving Flat Shading

What if evaluate Phong lighting model at each pixel of the polygon?

Better, but result still clearly faceted

For smoother-looking surfaces we introduce vertex normals at each vertex

- Usually different from facet normal
- Used only for shading
- Think of as a better approximation of the real surface that the polygons approximate

Wolfgang Heidrich

Vertex Normals

Vertex normals may be

- Provided with the model
- Computed from first principles
- Approximated by averaging the normals of the facets that share the vertex

Gourand Shading Artifacts

often appears dull, chalky lacks accurate specular component

• if included, will be averaged over entire polygon

Gourand Shading Artifacts

Mach bands

- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights

Phong Shading

Linearly interpolating surface normal across the facet, applying Phong lighting model at every pixel

- Same input as Gouraud shading
- Pro: much smoother results
- Con: considerably more expensive

Not the same as Phong lighting

- Common confusion
- Phong lighting: empirical model to calculate illumination at a point on a surface

Wolfgang Heidrich

Phong Shading

Linearly interpolate the vertex normals

- Compute lighting equations at each pixel
- Can use specular component

discontinuity in normal's rate of change harder to detect

Phong Shading Difficulties

Computationally expensive

- Per-pixel vector normalization and lighting computation!
- Floating point operations required

Lighting after perspective projection

- Messes up the angles between vectors
- Have to keep eye-space vectors around

No direct support in standard rendering pipeline

 But can be simulated with texture mapping, procedural shading hardware (see later)

Wolfgang Heidrich

Shading Artifacts: Silhouettes

Polygonal silhouettes remain

Gouraud Phong

How to Interpolate?

Need to propagate vertex attributes to pixels

- Interpolate between vertices:
 - z (depth)
 - r,g,b color components
 - N_x, N_y, N_z surface normals
 - u,v texture coordinates (talk about these later)
- Three equivalent ways of viewing this (for triangles)
 - 1. Linear interpolation
 - 2. Barycentric coordinates
 - 3. Plane Equation

Wolfgang Heidrich

1. Linear Interpolation

Interpolate quantity along L and R edges

- (as a function of y)
- Then interpolate quantity as a function of x

Linear Interpolation

Most common approach, and what OpenGL does

- Perform Phong lighting at the vertices
- Linearly interpolate the resulting colors over faces edge: mix of c_1 , c_2
 - Along edges
 - Along scanlines

interior: mix of c1, c2, c3

edge: mix of c1, c3

Wolfgang Heidrich

2. Barycentric Coordinates

Have seen this before

 Barycentric Coordinates: weighted combination of vertices, with weights summing to 1

$$P = \alpha \cdot P_1 + \beta \cdot P_2 + \gamma \cdot P_3$$

$$\alpha + \beta + \gamma = 1$$

$$0 \le \alpha, \beta, \gamma \le 1$$

$$\rho_1 \quad (1,0,0)$$

$$\beta = 0$$

$$\beta = 0.5$$

$$\rho_3 \quad P_4 \quad P_5 \quad P_6 = 1$$

Wolfgang Heidrich

(0,1,0)

Barycentric Coordinates

Convex combination of 3 points

$$\mathbf{x} = \alpha \cdot \mathbf{x}_1 + \beta \cdot \mathbf{x}_2 + \gamma \cdot \mathbf{x}_3$$

with $\alpha + \beta + \gamma = 1, \ 0 \le \alpha, \beta, \gamma \le 1$

• α , β , and γ are called barycentric coordinates

Wolfgang Heidrich

Barycentric Coordinates

One way to compute them:

$$\mathbf{x} = \alpha \mathbf{x}_1 + \beta \mathbf{x}_2 + \gamma \mathbf{x}_3$$
 with

$$\alpha = A_1/A$$

$$\beta = A_2/A$$

$$\gamma = A_3/A$$

Barycentric Coordinates

How to compute areas?

- Cross products!
- e.g:

3. Plane Equation

Observation: Quantities vary linearly across image plane

- E.g.: r = Ax + By + C
 - r= red channel of the color
 - Same for g, b, Nx, Ny, Nz, z...
- From info at vertices we know:

$$r_1 = Ax_1 + By_1 + C$$

 $r_2 = Ax_2 + By_2 + C$
 $r_3 = Ax_3 + By_3 + C$

- Solve for A, B, C
- One-time set-up cost per triangle and interpolated quantity

Discussion

Which algorithm to use when?

- Scanline interpolation
 - Together with trapezoid scan conversion
- Plane equations
 - Together with edge equation scan conversion
- Barycentric coordinates
 - Not useful in the current context
 - But: method of choice for ray-tracing
 - Whenever you only need to compute the value for a single pixel

Wolfgang Heidrich

Clipping

Wolfgang Heidrich

Purpose

- Originally: 2D
 - Determine portion of line inside an axis-aligned rectangle (screen or window)
- 3D
 - Determine portion of line inside axis-ligned parallelpiped (viewing frustum in NDC)
 - Simple extension to the 2D algorithms

Outcodes (Cohen, Sutherland '74)

- 4 flags encoding position of a point relative to top, bottom, left, and right boundary
- E.g.:
 - -OC(p1)=0010
 - -OC(p2)=0000
 - -OC(p3)=1001

Wolfgang Heidrich

Line Clipping

Line segment:

• (p1,p2)

Trivial cases:

- \circ OC(p1)== 0 && OC(p2)==0
 - Both points inside window, thus line segment completely visible (trivial accept)
- (OC(p1) & OC(p2))!= 0 (i.e. bitwise "and"!)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)

α -Clipping

- Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/Sutherland, Cyrus/Beck, Liang/Barsky)
- Define <u>window-edge-coordinates</u> of a point $\mathbf{p} = (x,y)^T$

$$-WEC_L(\mathbf{p}) = x - x_{min}$$

$$-WEC_{R}(\mathbf{p}) = x_{max} - x$$

$$- WEC_B(\mathbf{p}) = y - y_{min}$$

 $-WEC_{T}(\mathbf{p}) = y_{max} - y$

Negative if outside!

α-Clipping

- Line segment defined as: p1+ α (p2-p1)
- Intersection point with one of the borders (say, left):

$$x_{1} + \alpha(x_{2} - x_{1}) = x_{min} \Leftrightarrow$$

$$\alpha = \frac{x_{min} - x_{1}}{x_{2} - x_{1}}$$

$$= \frac{x_{min} - x_{1}}{(x_{2} - x_{min}) - (x_{1} - x_{min})}$$

$$= \frac{\text{WEC}_{L}(x_{1})}{\text{WEC}_{L}(x_{1}) - \text{WEC}_{L}(x_{2})}$$

Wolfgang Heidrich

Line Clipping

α -Clipping: algorithm

alphaClip(p1, p2, window) {

Determine window-edge-coordinates of p1, p2

Determine outcodes OC(p1), OC(p2)

Handle trivial accept and reject

 $\alpha 1 = 0$; // line parameter for first point

 α 2= 1; // line parameter for second point

. . .

α -Clipping: algorithm (cont.)

```
// now clip point p1 against all edges if( OC(p1) & LEFT_FLAG ) {  \alpha = \text{WEC}_L(\text{p1})/(\text{WEC}_L(\text{p1}) - \text{WEC}_L(\text{p2})); }   \alpha 1 = \max(\alpha 1, \alpha);  }
```

Similarly clip p1 against other edges

. . .

Wolfgang Heidrich

Line Clipping

α -Clipping: example for clipping p1

α -Clipping: algorithm (cont.)

```
// now clip point p2 against all edges if( OC(p2) & LEFT_FLAG ) { \alpha = WEC_L(p2)/(WEC_L(p1) - WEC_L(p2)); \alpha = min(\alpha = 2, \alpha); }
```

Similarly clip p1 against other edges

. . .

Wolfgang Heidrich

Line Clipping

α -Clipping: algorithm (cont.)

```
... // wrap-up  if(\alpha 1 > \alpha 2)  no output; else output line from p1+\alpha1(p2-p1) to p1+\alpha2(p2-p1) } // end of algorithm
```


Line Clipping in 3D

Approach:

- Clip against parallelpiped in NDC (after perspective transform)
- Means that the clipping volume is always the same!
 - OpenGL: $x_{min} = y_{min} = -1$, $x_{max} = y_{max} = 1$
- Boundary lines become boundary planes
 - But outcodes and WECs still work the same way
 - Additional front and back clipping plane
 - $z_{min}=0, z_{max}=1$ in OpenGL

Wolfgang Heidrich

Line Clipping

Extensions

- Algorithm can be extended to clipping lines against
 - Arbitrary convex polygons (2D)
 - Arbitrary convex polytopes (3D)

Non-convex clipping regions

• E.g.: windows in a window system!

Wolfgang Heidrich

Line Clipping

Non-convex clipping regions

- Problem: arbitrary number of visible line segments
- Different approaches:
 - Break down polygon into convex parts
 - Scan convert for full window, and discard hidden pixels

Objective

- 2D: clip polygon against rectangular window
 - Or general convex polygons
 - Extensions for non-convex or general polygons
- 3D: clip polygon against parallelpiped

Wolfgang Heidrich

Polygon Clipping

Not just clipping all boundary lines

May have to introduce new line segments

Volfgang Heidri

Classes of Polygons

- Triangles
- Convex
- Concave
- Holes and self-intersection

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm ('74)

- Arbitrary convex or concave <u>object polygon</u>
 - Restriction to triangles does not simplify things
- Convex subject polygon (window)

Sutherland/Hodgeman Algorithm ('74)

 Approach: clip object polygon independently against all edges of subject polygon

Wolfgang Heidrich

Polygon Clipping

Clipping against one edge:

```
clipPolygonToEdge( p[n], edge ) {
  for( i= 0 ; i < n ; i++ ) {
    if( p[i] inside edge ) {
      if( p[i-1] inside edge ) // p[-1]= p[n-1]
        output p[i];
    else {
      p= intersect( p[i-1], p[i], edge );
      output p, p[i];
    }
  } else...</pre>
```


p[i]

Output: p, p[i]

Polygon Clipping

Output: p[i]

p[i]

Clipping against one edge (cont)

Sutherland/Hodgeman Algorithm

- Inside/outside tests: outcodes
- Intersection of line segment with edge: window-edge coordinates
- Similar to Cohen/Sutherland algorithm for line clipping

Wolfgang Heidrich

Sutherland/Hodgeman Algorithm

- Discussion:
 - Works for concave polygons
 - But generates degenerate cases

Sutherland/Hodgeman Algorithm

- Discussion:
 - Clipping against individual edges independent
 - Great for hardware (pipelining)
 - All vertices required in memory at the same time
 - Not so good, but unavoidable
 - Another reason for using triangles only in hardware rendering

Wolfgang Heidrich

UBC

Sutherland/Hodgeman Algorithm

- For Rendering Pipeline:
 - Re-triangulate resulting polygon (can be done for every individual clipping edge)

Other Polygon Clipping Algorithms

- Weiler/Aetherton '77:
 - Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti '92:
 - Self intersection allowed as well
- · ... many more
 - Improved handling of degenerate cases
 - But not often used in practice due to high complexity

Wolfgang Heidrich

Coming Up:

Friday

More clipping, hidden surface removal