Scan Conversion

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 2

Due Monday, Feb 28
Homework 3

Discussed in labs this week
Homework 4

Hidden surface removal, out today
Reading

Chapters 8, 9

Hidden surface removal, shading

Wolfgang Heidrich

The Rendering Pipeline

Geometry Processing

Geometry Model/View — Perspective | | A
Database Transform. Lielitire Transform. el]
L] Scan L q 11 Depth . | Frame-
Conversion exiing Test Blending buffer
Rasterization Fragment Processing

Wolfgang Heidrich

Scan Conversion - Rasterization

Convert continuous rendering primitives
into discrete fragments/pixels

Lines

Midpoint/Bresenham
Triangles

Flood fill

Scanline

Implicit formulation
Interpolation

Wolfgang Heidrich

Scan Conversion of Polygons

One possible scan conversion

o ofof o o o

o o o o o /o/ﬂ o
o o o)/ o o /O o

o

o

Wolfgang Heidrich

Scan Conversion of Polygons

A General Algorithm
Intersect each scanline with all edges
Sort intersections in x
Calculate parity to determine in/out
Fill the ‘in’ pixels

Wolfgang Heidrich

Edge Walking

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)
setPixel (x,y) ;

xL += DxL;

xR += DxR;

}
Yr R o

—_
—

Vg ,/—’J K\-A-Ax

X, Xp

g

Wolfgang Heidrich

Modern Rasterization:
Edge Equations

Define a triangle as follows:

89
See.

(XL
(ALY

(LI
(L LLL
9999

Wolfgang Heidrich

Computing Edge Equations
Implicit equation of a triangle edge:

L06y) =2 () (y-y,) =0
(. -x,)

(see Bresenham algorithm)
L(x

oth
Question:

What happens for vertical lines?

,y) positive on one side of edge, negative on the
er

Wolfgang Heidrich

Edge Walking Triangles

Split triangles into two regions
with continuous left and right edges

1 1
scanTrapezoid(X;,X,, V3, yl,m*”, ”Tz)

£

Wolfgang Heidrich

Using Edge Equations
Usage:

Go over each pixel in bounding rectangle
Check if pixel is inside/outside of triangle
Using sig

Wolfgang Heidrich

Edge Equations

Multiply with denominator

Lix,y) =y, -y)(x—x) -y -y x, - x)=0
Avoids singularity
Works with vertical lines

What about the sign?
Which side is in, which is out?

Wolfgang Heidrich

Edge Equations

Determining the sign

Which side is “in” and which is “out” depends on order
of start/end vertices...

Convention: specify vertices in counter-clockwise order

p3

p2

DT

pl
pS

6 Wolfgang Heideich

Edge Equations

Counter-Clockwise Triangles
The equation L(x,y) as specified above is negative
inside, positive outside
Flip sign:
Lx,y) ==y, = y)(x = x)+(y -y)(x, - x) =0

Clockwise triangles

Use original formula

L(x,y)=(, - y)(x-x)=(y-y)x,-x)=0

Wolfgang Heidrich

Discussion of Polygon Scan
Conversion Algorithms

On old hardware:
Use first scan-conversion algorithm
Scan-convert edges, then fill in scanlines

Compute interpolated values by interpolating along
edges, then scanlines

Requires clipping of polygons against viewing volume
Faster if you have a few, large polygons
Possibly faster in software

Wolfgang Heidrich

Discussion of Polygon Scan
Conversion Algorithms

Modern GPUs:
Use edge equations
And plane equations for attribute interpolation
No clipping of primitives required
Faster with many small triangles

Additional advantage:
Can control the order in which pixels are processed
Allows for more memory-coherent traversal orders
E.g. tiles or space-filling curve rather than scanlines

Wolfgang Heidrich

Triangle Rasterization Issues
(Independent of Algorithm)

Exactly which pixels should be lit?
A: Those pixels inside the triangle edge (of course)
But what about pixels exactly on the edge?
Draw them: order of triangles matters (it shouldn’t)
Don’t draw them: gaps possible between triangles
We need a consistent (if arbitrary) rule

Example: draw pixels on left or top edge, but not on
right or bottom edge

Wolfgang Heidrich

Triangle Rasterization Issues

Shared Edge Ordering
GCSSSo CSSSo
900000
0000e
CCDCC) CCDC ()
900e 900@
(DC) (D)
0e 0e
() ()
() ()
() ("

Wolfgang Heidrich

Triangle Rasterization Issues

Triangle Rasterization Issues

Sliver

Wolfgang Heidrich

Moving Slivers

0000

Wolfgang Heidrich

Triangle Rasterization Issues

These are ALIASING Problems

Problems associated with representing
continuous functions (triangles) with finite
resolution (pixels)

More on this problem when we talk about
sampling...

Wolfgang Heidrich

Shading

Wolfgang Heidrich

Wolfgang Heidrich

The Rendering Pipeline

Shading

Geometry | || Model/View B |_,| Perspective | | Fevefl

Database Transform. || Lielitire Transform. el N|
i Scan L q [Depth | | . | Frame-

Conversion exiing Test Blending buffer

Wolfgang Heidrich

Input to Scan Conversion:
Vertices of triangles (lines, quadrilaterals...)
Color (per vertex)
Specified with glColor
Or: computed with lighting
World-space normal (per vertex)
Left over from lighting stage

Shading Task:

Determine color of every pixel in the triangle

Wolfgang Heidrich

Shading

How can we assign pixel colors using this
information?

Easiest: flat shading

Whole triangle gets one color (color of 15t vertex)
Better: Gouraud shading

Linearly interpolate color across triangle
Even better:

Linearly interpolate the normal vector

Compute lighting for every pixel

Note: not supported by rendering pipeline as
discussed so far

Flat Shading

Wolfgang Heidrich

Simplest approach calculates illumination at a single
point for each polygon

Obviously inaccurate for smooth surfaces

Wolfgang Heidrich

Flat Shading Approximations

Flat Shading Approximations

If an object really is faceted, is
this accurate?

no!
For point sources, the direction to light
varies across the facet <

For specular reflectance, direction to
eye varies across the facet

Wolfgang Heidrich

If an object really is faceted, is
this accurate?
Improving Flat Shading

Vertex Normals

What if evaluate Phong lighting model at each
pixel of the polygon?

Better, but result still clearly faceted
For smoother-looking surfaces
we introduce vzrizi normals at each
vertex ot /
Usually different from facet normal
Used only for shading

Think of as a better approximation of the rzal surface that
the polygons approximate

Wolfgang Heidrich

Vertex normals may be
Provided with the model
Computed from first principles

Approximated by
averaging the normals
of the facets that
share the vertex

B
XDIADSAY

Wolfgang Heidrich

Gouraud Shading Artifacts

often appears dull, chalky

lacks accurate specular component
if included, will be averaged over entire polygon

Wolfgang Heidrich

Gouraud Shading Artifacts

Mach bands
Eye enhances discontinuity in first derivative
Very disturbing, especially for highlights

Wolfgang Heidrich

Phong Shading

linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel

Same input as Gouraud shading
Pro: much smoother results

Con: considerably more expensive

Not the same as Phong lighting
Common confusion (ﬂ
-+ Phong lighting: empirical model to calculate illuminati

point on a surface

Wolfgang Heidrich

Phong Shading

Linearly interpolate the vertex normals
Compute lighting equations at each pixel

Can use specular component
#lights

R shiny
Ilotal = kalambiem + E Ii(kd (n : ll) + ks(v ' ri) ’)
i=1

remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

Wolfgang Heidrich

Phong Shading Difficulties

Computationally expensive

Per-pixel vector normalization and lighting computation!
Floating point operations required

Lighting after perspective projection

Messes up the angles between vectors

Have to keep eye-space vectors around

No direct support in standard rendering
pipeline

But can be simulated with texture mapping, procedural
shading hardware (see later)

Shading Artifacts: Silhouettes

Wolfgang Heidrich

Polygonal silhouettes remain

Gouraud Phong

Wolfgang Heidrich

How to Interpolate?

1. Linear Interpolation

Need to propagate vertex attributes to pixels

Interpolate between vertices:

z (depth)

r,g,b color components

N, Ny, N, surface normals

u,v texture coordinates (talk about these later)
Three equivalent ways of viewing this (for triangles)

Linear interpolation

Barycentric coordinates

Plane Equation

Wolfgang Heidrich

Interpolate quantity along L and R edges
(as a function of y)
Then interpolate quantity as a function of x

vi
v3 P(x,y)
VR
y
v2

Wolfgang Heidrich

Linear Interpolation

2. Barycentric Coordinates

Most common approach, and what OpenGL does
Perform Phong lighting at the vertices
Linearly interpolate the resulting colors over faces

Along edges
Along scanlines edge: mix of ¢;, ¢,
Same as Barycentric Coordinates! ~

interior: mix of ¢1, ¢2, ¢3
edge: mix of c1, c3

Wolfgang Heidrich

Have seen this before

Barycentric Coordinates: weighted combination of
vertices, with weights summing to 1

P=a‘P+ P, + P

a+f+y=1 B (1,00
O=a,B,y =1 p=0
(0,0,1) B =05
B
p=1
P, (01,0)

Wolfgang Heidrich

Barycentric Coordinates

Barycentric Coordinates

Convex combination of 3 points
X=0X +0X, +Y°X;

witha+p+y=1 0=<a,p,y=<1

a, B, and y are ca[led
barycentric coordinates
X3

X2

X4

Wolfgang Heidrich

One way to compute them:
X = 0X, + X, + yx; with

a=A/A %
B=A,/A X,
y=A,/1A

X4 Wolfgang Heidrich

Barycentric Coordinates

How to compute areas?
Cross products!

e.g:

X3

1
A = EH(x2 -x)x(x-x)|

X4

Xz

Wolfgang Heidrich

3. Plane Equation

Oﬁ:'%ation: Quantities vary linearly across image

E.g:r=Ax+By+C
r=red channel of the color
Same for g, b, Nx, Ny, Nz, z...
From info at vertices we know:

n=Ax +By +C
r,=Ax,+By,+C p1
Solve%ri\,‘%?c@"' By 3+ C

One-time set-up cost per triangle and interpolated quantity
p2

Wolfgang Heidrich

p3

Coming Up:

Wednesday/Friday

Clipping, hidden surface removal

Wolfgang Heidrich

