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Course News

Assignment 2

Due Monday, Feb 28
Homework 3

Discussed in labs this week
Homework 4

Hidden surface removal, out today
Reading

Chapters 8, 9

Hidden surface removal, shading
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The Rendering Pipeline

Geometry Processing

Geometry Model/View — Perspective | | A
Database Transform. Lielitire Transform. el ]
L] Scan L q 11 Depth . | Frame-
Conversion exiing Test Blending buffer
Rasterization Fragment Processing
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Scan Conversion - Rasterization

Convert continuous rendering primitives
into discrete fragments/pixels

Lines

Midpoint/Bresenham
Triangles

Flood fill

Scanline

Implicit formulation
Interpolation
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Scan Conversion of Polygons

One possible scan conversion
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Scan Conversion of Polygons

A General Algorithm
Intersect each scanline with all edges
Sort intersections in x
Calculate parity to determine in/out
Fill the ‘in’ pixels
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Edge Walking

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)
setPixel (x,y) ;

xL += DxL;

xR += DxR;

}
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Modern Rasterization:
Edge Equations

Define a triangle as follows:
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Computing Edge Equations
Implicit equation of a triangle edge:

L06y) =2 () (y-y,) =0
(. -x,)

(see Bresenham algorithm)
L(x

oth
Question:

What happens for vertical lines?

,y) positive on one side of edge, negative on the
er
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Edge Walking Triangles

Split triangles into two regions
with continuous left and right edges

1 1
scanTrapezoid( X;,X,, V3, yl,m*”, ”Tz)
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Using Edge Equations
Usage:

Go over each pixel in bounding rectangle
Check if pixel is inside/outside of triangle
Using sig
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Edge Equations

Multiply with denominator

Lix,y) =y, -y )(x—x) -y -y x, - x)=0
Avoids singularity
Works with vertical lines

What about the sign?
Which side is in, which is out?
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Edge Equations

Determining the sign

Which side is “in” and which is “out” depends on order
of start/end vertices...

Convention: specify vertices in counter-clockwise order
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Edge Equations

Counter-Clockwise Triangles
The equation L(x,y) as specified above is negative
inside, positive outside
Flip sign:
Lx,y) ==y, = y)(x = x)+(y -y )(x, - x) =0

Clockwise triangles

Use original formula

L(x,y)=(, - y)(x-x)=(y-y)x,-x)=0
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Discussion of Polygon Scan
Conversion Algorithms

On old hardware:
Use first scan-conversion algorithm
Scan-convert edges, then fill in scanlines

Compute interpolated values by interpolating along
edges, then scanlines

Requires clipping of polygons against viewing volume
Faster if you have a few, large polygons
Possibly faster in software
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Discussion of Polygon Scan
Conversion Algorithms

Modern GPUs:
Use edge equations
And plane equations for attribute interpolation
No clipping of primitives required
Faster with many small triangles

Additional advantage:
Can control the order in which pixels are processed
Allows for more memory-coherent traversal orders
E.g. tiles or space-filling curve rather than scanlines
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Triangle Rasterization Issues
(Independent of Algorithm)

Exactly which pixels should be lit?
A: Those pixels inside the triangle edge (of course)
But what about pixels exactly on the edge?
Draw them: order of triangles matters (it shouldn’t)
Don’t draw them: gaps possible between triangles
We need a consistent (if arbitrary) rule

Example: draw pixels on left or top edge, but not on
right or bottom edge
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Triangle Rasterization Issues

Shared Edge Ordering
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Triangle Rasterization Issues

Triangle Rasterization Issues

Sliver
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Moving Slivers

0000
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Triangle Rasterization Issues

These are ALIASING Problems

Problems associated with representing
continuous functions (triangles) with finite
resolution (pixels)

More on this problem when we talk about
sampling...
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Shading
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The Rendering Pipeline

Shading

Geometry | || Model/View B |_,| Perspective | | Fevefl

Database Transform. || Lielitire Transform. el N|
i Scan L q [ Depth | | . | Frame-

Conversion exiing Test Blending buffer
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Input to Scan Conversion:
Vertices of triangles (lines, quadrilaterals...)
Color (per vertex)
Specified with glColor
Or: computed with lighting
World-space normal (per vertex)
Left over from lighting stage

Shading Task:

Determine color of every pixel in the triangle
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Shading

How can we assign pixel colors using this
information?

Easiest: flat shading

Whole triangle gets one color (color of 15t vertex)
Better: Gouraud shading

Linearly interpolate color across triangle
Even better:

Linearly interpolate the normal vector

Compute lighting for every pixel

Note: not supported by rendering pipeline as
discussed so far

Flat Shading

Wolfgang Heidrich

Simplest approach calculates illumination at a single
point for each polygon

Obviously inaccurate for smooth surfaces
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Flat Shading Approximations

Flat Shading Approximations

If an object really is faceted, is
this accurate?

no!
For point sources, the direction to light
varies across the facet <

For specular reflectance, direction to
eye varies across the facet
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If an object really is faceted, is
this accurate?
Improving Flat Shading

Vertex Normals

What if evaluate Phong lighting model at each
pixel of the polygon?

Better, but result still clearly faceted
For smoother-looking surfaces
we introduce vzrizi normals at each
vertex ot /
Usually different from facet normal
Used only for shading

Think of as a better approximation of the rzal surface that
the polygons approximate
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Vertex normals may be
Provided with the model
Computed from first principles

Approximated by
averaging the normals
of the facets that
share the vertex

B
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Gouraud Shading Artifacts

often appears dull, chalky

lacks accurate specular component
if included, will be averaged over entire polygon
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Gouraud Shading Artifacts

Mach bands
Eye enhances discontinuity in first derivative
Very disturbing, especially for highlights
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Phong Shading

linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel

Same input as Gouraud shading
Pro: much smoother results

Con: considerably more expensive

Not the same as Phong lighting
Common confusion (ﬂ
-+ Phong lighting: empirical model to calculate illuminati

point on a surface
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Phong Shading

Linearly interpolate the vertex normals
Compute lighting equations at each pixel

Can use specular component
#lights

R shiny
Ilotal = kalambiem + E Ii(kd (n : ll) + ks(v ' ri) ’ )
i=1

remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect
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Phong Shading Difficulties

Computationally expensive

Per-pixel vector normalization and lighting computation!
Floating point operations required

Lighting after perspective projection

Messes up the angles between vectors

Have to keep eye-space vectors around

No direct support in standard rendering
pipeline

But can be simulated with texture mapping, procedural
shading hardware (see later)

Shading Artifacts: Silhouettes
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Polygonal silhouettes remain

Gouraud Phong
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How to Interpolate?

1. Linear Interpolation

Need to propagate vertex attributes to pixels

Interpolate between vertices:

z (depth)

r,g,b color components

N, Ny, N, surface normals

u,v  texture coordinates (talk about these later)
Three equivalent ways of viewing this (for triangles)

Linear interpolation

Barycentric coordinates

Plane Equation
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Interpolate quantity along L and R edges
(as a function of y)
Then interpolate quantity as a function of x

vi
v3 P(x,y)
VR
y
v2
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Linear Interpolation

2. Barycentric Coordinates

Most common approach, and what OpenGL does
Perform Phong lighting at the vertices
Linearly interpolate the resulting colors over faces

Along edges
Along scanlines edge: mix of ¢;, ¢,
Same as Barycentric Coordinates! ~

interior: mix of ¢1, ¢2, ¢3
edge: mix of c1, c3
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Have seen this before

Barycentric Coordinates: weighted combination of
vertices, with weights summing to 1

P=a‘P+ P, + P

a+f+y=1 B (1,00
O=a,B,y =1 p=0
(0,0,1) B =05
B
p=1
P, (01,0)
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Barycentric Coordinates

Barycentric Coordinates

Convex combination of 3 points
X=0X +0X, +Y°X;

witha+p+y=1 0=<a,p,y=<1

a, B, and y are ca[led
barycentric coordinates
X3

X2

X4

Wolfgang Heidrich

One way to compute them:
X = 0X, + X, + yx; with

a=A/A %
B=A,/A X,
y=A,/1A
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Barycentric Coordinates

How to compute areas?
Cross products!

e.g:

X3

1
A = EH(x2 -x)x(x-x)|

X4

Xz

Wolfgang Heidrich

3. Plane Equation

Oﬁ:'%ation: Quantities vary linearly across image

E.g:r=Ax+By+C
r=red channel of the color
Same for g, b, Nx, Ny, Nz, z...
From info at vertices we know:

n=Ax +By +C
r,=Ax,+By,+C p1
Solve%ri\,‘%?c@"' By 3+ C

One-time set-up cost per triangle and interpolated quantity
p2
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p3

Coming Up:

Wednesday/Friday

Clipping, hidden surface removal
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