Scan Conversion

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 2

Due Monday, Feb 28
Homework 3

Discussed in labs next wee
Reading

Chapter 3 (this week)

Chapter 8 (next week)

Wolfgang Heidrich

The Rendering Pipeline

Geometry Processing

Geometry Model/View — Perspective | | A
Database Transform. Lielitire Transform. el]
L] Scan L q 11 Depth . | Frame-
Conversion exiing Test Blending buffer
Rasterization Fragment Processing

Wolfgang Heidrich

Course News

Assignment 2
Due March 2

Homework 3
Discussed in labs next week

Reading
Chapter 3

Wolfgang Heidrich

The Rendering Pipeline

Geometry Processin:

Geometry Model/View Perspective
Database | || Transform. | | YMing | | qoongrorm, | | Clipping
Scan . Depth Frame-
Conversion| | Texturing ot Blending e

Rasterization Fragment Processing

Wolfgang Heidrich

Scan Conversion - Rasterization

Convert continuous rendering primitives
into discrete fragments/pixels

Lines

Midpoint/Bresenham
Triangles

Flood fill

Scanline

Implicit formulation
Interpolation

Wolfgang Heidrich

Scan Conversion - Lines

Scan Conversion - Lines

Wolfgang Heidrich

Wolfgang Heidrich

Scan Conversion - Lines

Scan Conversion of Lines -
Digital Differential Analyzer

First Attempt:
Line (s,e) given in device coordinates

Create the thinnest line that connects start point and
end point without gap

Assumptions for now:
Start point to the left of end point: xs< xe

Slope of the line between 0 and 1 (l.e. elevation
between 0 and 45 degrees:

0<2"Y 4
xe — xs

Wolfgang Heidrich

First Attempt:
dda(float xs, ys, xe, ye) {
// assume xs < xe, and slope m between 0 and 1
float m= (ye-ys)/(xe-xs);
float y=round(ys);
for(int x=round(xs) ; x<=xe ; x++) {
drawPixel(x, round(y));
y=ytmg
}
}

Wolfgang Heidrich

Scan Conversion of Lines

Scan Conversion of Lines
Midpoint Algorithm

DDA:

Wolfgang Heidrich

Moving horizontally along x direction

Draw at current y value, or move up vertically to y+1?

Check if midpoint between two possible pixel centers above,

below line
Candidates
Top pixel: (x+1,y+1)
Bottom pixel: (x+1, y)
Midpoint: (x+1, y+.5)
Check if midpoint above or below line
Below: top pixel
Above: bottom pixel

Key idea behind Bresenham Alg.

5"

Wolfgang Heidrich

Scan Conversion of Lines

Idea: decision variable
dda(float xs, ys, xe, ye) {

float d= 0.0;

float m= (ye-ys)/(xe-xs);

int y= round(ys);

for(int x=round(xs) ; x<=xe ; x++) {
drawPixel(x, y);
d=d+m;
if(d>=0.5) { d=d-1.0; y++; }

Wolfgang Heidrich

Scan Conversion of Lines
Bresenham Algorithm ('63)

Use decision variable to generate purely integer
algorithm
Explicit line equation:
y=QeTh) (o,
(x,=x,)
Implicit version:
L) =22 () (-5 =0
(x,=x,)
In particular for specific x, y, we have
L(x,y)>0 if (x,y) below the line, and

L(x,y)<0 if (x,y) above the line

Wolfgang Heidrich

Scan Conversion of Lines
Bresenham Algorithm

Decision variable: after drawing point (x,y) decide
whether to draw

(x+1,y): case E (for “east’)
(x+1,yt1): case NE (for “north-east’)
Check whether (x+1,y+1/2) is above or below line

d=L(x+1,y+%)

Point above line if and only if d<0

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
Problem: how to update d?
Case E (point above line, d<= 0)
X=X+1;
d= L(x+2, y+1/2)= d+ (y,-y)(x,x,)
Case NE (point below line, &> 0)
X=x+1; y=y+1;
d= L(xt2, y+3/2)= dt (y,»)/(x,~x,) -1
Initialization:
d= L(x+1, y+1/2)= (v -y)(x,x) —1/2

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
This is still floating point
But: only sign of d matters
Thus: can multiply everything by 2(x.-x,)

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
Bresenham(int xs, ys, xe, ye) {
int y=ys;
incrE= 2(ye - ys);
inctNE= 2((ye - ys) — (xe-xs));
for(int x=xs ; x<=xe ; x++) {
drawPixel(x, y);
if(d<=0) d+= incrE;
else { d+= incrNE; y++; }

Wolfgang Heidrich

Scan Conversion of Lines

Discussion
Bresenham sets same pixels as DDA

Intensity of line varies with its angle!
|

Wolfgang Heidrich

Scan Conversion of Lines

Discussion
Bresenham
Good for hardware implementations (integer!)
DDA
May be faster for software (depends on system)!
Floating point ops higher parallelized (pipelined)
E.g. RISC CPUs from MIPS, SUN
No if statements in inner loop
More efficient use of processor pipelining

Wolfgang Heidrich

Scan Conversion of Polygons

Wolfgang Heidrich

Scan Conversion of Polygons

One possible scan conversion

o o| o o o| o

o o o [} o/o/ﬂ o
o o o/o/o o/o o

o

o

Wolfgang Heidrich

Scan Conversion of Polygons

A General Algorithm
Intersect each scanline with all edges
Sort intersections in x
Calculate parity to determine in/out
Fill the ‘in’ pixels

Wolfgang Heidrich

Scan Conversion of Polygons

Works for arbitrary polygons
Efficiency improvement:
Exploit row-to-row coherence using “edge table”

Wolfgang Heidrich

Edge Walking

Past graphics hardware
Exploit continuous L and R edges on trapezoid

scanTrapezoid(X,, X Vg Vp» AX,, Axy)

Yr o
i :

Edge Walking

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)
setPixel (x,y) ;

xL += DxL;

xR += DxR;

Vi A;—J X, Xy L‘AJCR
Edge Walking Triangles

Split triangles into two regions
with continuous left and right edges

1
scanTrapezoid(X;,X,, V3, V,—,)
P my” my,
1

1 1
scanTrapezoid(x,, X, V5, y3,,7, .
23 12

}
Yr R o
1 A
Y A;:J X, Xg K_‘A)C R
Edge Walking Triangles
Issues

Wolfgang Heidrich

Modern Rasterization:
Edge Equations

Many applications have small triangles
Setup cost is non-trivial
Clipping triangles produces non-triangles

This can be avoided through re-triangulation, as
discussed

Wolfgang Heidrich

Using Edge Equations
Define a triangle as follows: Usage:
Go over each pixel in bounding rectangle
gecessesseestestosssessesscestessosssestese Check if pixel is inside/outside of triangle
% Using sigr
- oo
%
X

XY
XX
XX

X

3

(XL
(ALY
(LI
(L LLL
9999

Wolfgang Heidrich

Wolfgang Heidrich

Computing Edge Equations

Edge Equations

Implicit equation of a triangle edge:

1) = P2)= (-3 =0
(see Bresenham algorithm)

L(x,y) positive on one side of edge, negative on the
other

Question:
What happens for vertical lines?

Wolfgang Heidrich

Multiply with denominator

Lx,y) =, = y)(x=x) = (y =y)(x, - x) =0

Avoids singularity
Works with vertical lines

What about the sign?

Which side is in, which is out?

Wolfgang Heidrich

Edge Equations

Edge Equations

Determining the sign

Which side is “in” and which is “out” depends on order
of start/end vertices...

Convention: specify vertices in counter-clockwise order

p3

p2

DT

pl
ps

pS Wolfgang Heidrich

Counter-Clockwise Triangles

The equation L(x,y) as specified above is negative
inside, positive outside

Flip sign:
Lxy)==(y, = y)(x=x)+(y=y)(x,—x)=0

Clockwise triangles

Use original formula

L(x,y)=(, - y)(x-x)=-(y-y)x,-x)=0

Wolfgang Heidrich

Discussion of Polygon Scan
Conversion Algorithms

Discussion of Polygon Scan
Conversion Algorithms

On old hardware:
Use first scan-conversion algorithm
Scan-convert edges, then fill in scanlines

Compute interpolated values by interpolating along
edges, then scanlines

Requires clipping of polygons against viewing volume
Faster if you have a few, large polygons
Possibly faster in software

Wolfgang Heidrich

Modern GPUs:
Use edge equations
And plane equations for attribute interpolation
No clipping of primitives required
Faster with many small triangles

Additional advantage:
Can control the order in which pixels are processed
Allows for more memory-coherent traversal orders
E.g. tiles or space-filling curve rather than scanlines

Wolfgang Heidrich

Triangle Rasterization Issues
(Independent of Algorithm)

Exactly which pixels should be lit?
A: Those pixels inside the triangle edge (of course)
But what about pixels exactly on the edge?
Draw them: order of triangles matters (it shouldn’t)
Don’t draw them: gaps possible between triangles
We need a consistent (if arbitrary) rule

Example: draw pixels on left or top edge, but not on
right or bottom edge

Wolfgang Heidrich

Triangle Rasterization Issues

Shared Edge Ordering
g0 CSSSo
9000060 900000

0000 ¢ 0000¢@
CCDC)C) 0000
9 00e S00e

(DC) (D)

0e 0e

() (\)

() ()

(") (")

Wolfgang Heidrich

Triangle Rasterization Issues

Sliver

oes
(X X [

Wolfgang Heidrich

Triangle Rasterization Issues

Triangle Rasterization Issues

These are ALIASING Problems

Problems associated with representing
continuous functions (triangles) with finite
resolution (pixels)

More on this problem when we talk about
sampling...

Wolfgang Heidrich

Moving Slivers
S0
000000
C)
90000
CSSSSSSSSSSd
9000
SOOI IO IC G X
Coming Up:
Monday

Scan conversion / shading

Wednesday/Friday

Clipping, hidden surface removal

Wolfgang Heidrich

