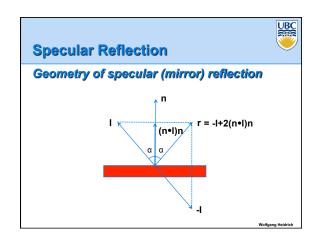
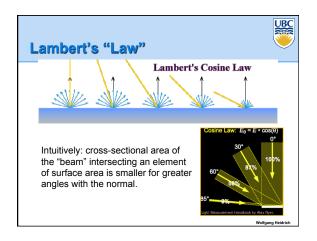
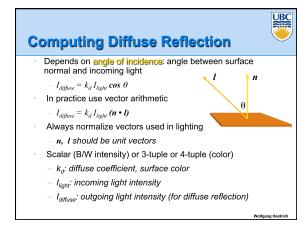
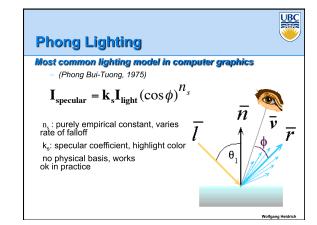
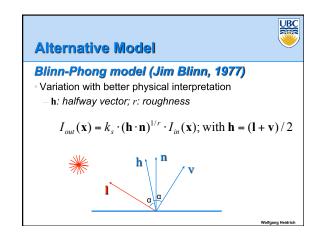

Course News Assignment 2 Due Monday, Feb 28 Homework 3 Discussed in labs next wee Quiz 1 Discussed in labs this week Reading Chapter 9, 3 Out of Town Friday

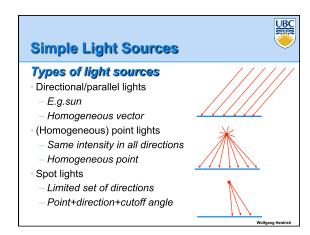

Anika will fill in for me

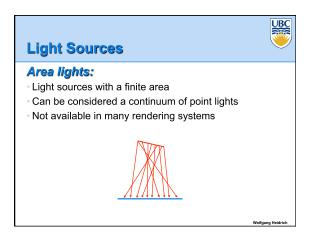


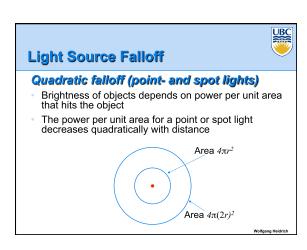


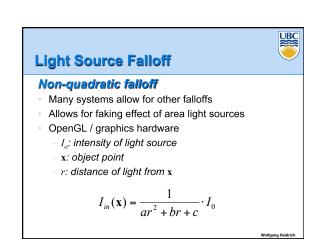


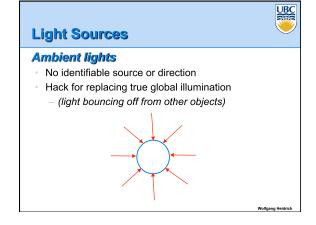


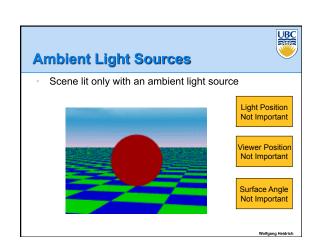


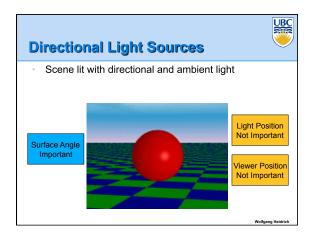


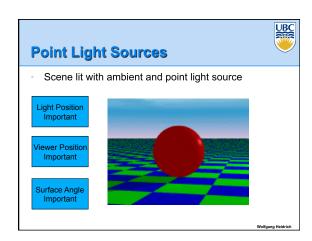












Geometry: positions and directions

- Standard: world coordinate system
 - Effect: lights fixed wrt world geometry
 - Demo: http://www.xmission.com/~nate/tutors.html
- Alternative: camera coordinate system
 - Effect: lights attached to camera (car headlights)
- Points and directions undergo normal model/view transformation

Illumination calculations: camera coords

Wolfgang Heidrich

Lighting Review

Lighting models

- Ambient
 - Normals don't matter
- Lambert/diffuse
 - Angle between surface normal and light
- Phong/specular
 - Surface normal, light, and viewpoint

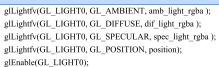
Nolfgang Heidrich

Lighting in OpenGL

Light source: amount of RGB light emitted

- Value represents percentage of full intensity E.g., (1.0,0.5,0.5)
- · Every light source emits ambient, diffuse, and specular light

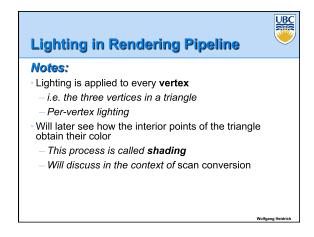
Materials: amount of RGB light reflected

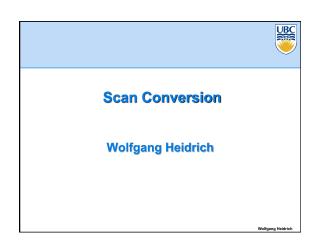

Value represents percentage reflected e.g., (0.0,1.0,0.5)

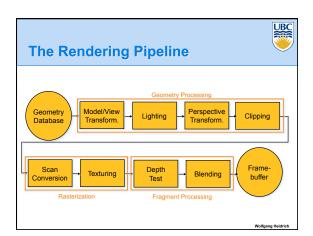
Interaction: multiply components

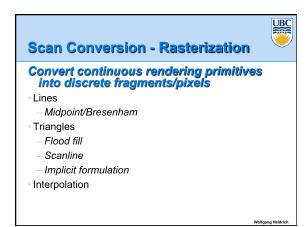
• Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

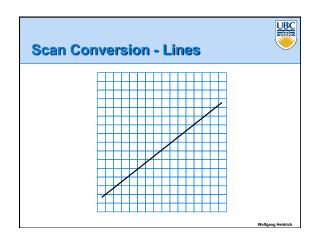
Volfgang Heidrich

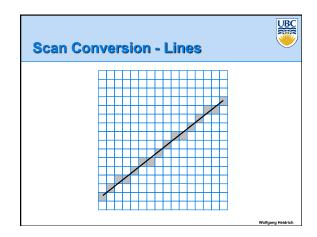

Lighting in OpenGL




 $glMaterialfv(\ GL_FRONT,\ GL_AMBIENT,\ ambient_rgba\);\\ glMaterialfv(\ GL_FRONT,\ GL_DIFFUSE,\ diffuse_rgba\);\\ glMaterialfv(\ GL_FRONT,\ GL_SPECULAR,\ specular_rgba\);\\ glMaterialfv(\ GL_FRONT,\ GL_SHININESS,\ n\);\\$


Wolfgang Heidrich



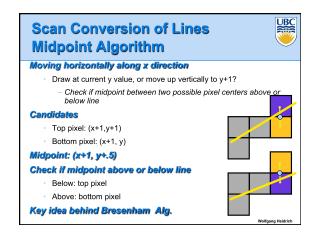


Scan Conversion - Lines

First Attempt:

- · Line (s,e) given in device coordinates
- Create the thinnest line that connects start point and end point without gap

Assumptions for now:


- Start point to the left of end point: xs< xe
- Slope of the line between 0 and 1 (I.e. elevation between 0 and 45 degrees:

$$0 \leq \frac{ye-ys}{xe-xs} \leq 1$$

Wolfgang Heidrich

Scan Conversion of Lines Digital Differential Analyzer First Attempt: dda(float xs, ys, xe, ye) { // assume xs < xe, and slope m between 0 and 1 float m= (ye-ys)/(xe-xs); float y= round(ys); for(int x= round(xs); x<= xe; x++) { drawPixel(x, round(y)); y= y+m; }

Scan Conversion of Lines DDA:

Scan Conversion of Lines Idea: decision variable dda(float xs, ys, xe, ye) { float d= 0.0; float m= (ye-ys)/(xe-xs); int y= round(ys); for(int x= round(xs) ; x<= xe ; x++) { drawPixel(x, y); d= d+m; if(d>= 0.5) { d= d-1.0; y++; } } }

Scan Conversion of Lines Bresenham Algorithm ('63) Use decision variable to generate purely integer algorithm Explicit line equation: $y = \frac{(y_e - y_s)}{(x_e - x_s)}(x - x_s) + y_s$ Implicit version: $L(x,y) = \frac{(y_e - y_s)}{(x_e - x_s)}(x - x_s) - (y - y_s) = 0$ In particular for specific x, y, we have -L(x,y) > 0 if (x,y) below the line, and -L(x,y) < 0 if (x,y) above the line

Scan Conversion of Lines Bresenham Algorithm

- Decision variable: after drawing point (x,y) decide whether to draw
 - -(x+1,y): case E (for "east") -(x+1,y+1): case NE (for "north-east")
- Check whether (x+1,y+1/2) is above or below line

$$d = L(x+1, y+\frac{1}{2})$$

Point above line if and only if d<0

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm

- Problem: how to update d?
- Case E (point above line, $d \le \theta$)
- -x = x + 1;
- $-d = L(x+2, y+1/2) = d + (y_e y_s)/(x_e x_s)$
- Case NE (point below line, d> 0)
- -x=x+1; y=y+1;
- $-d = L(x+2, y+3/2) = d + (y_e-y_s)/(x_e-x_s) -1$
- Initialization:
 - $d = L(x_s+1, y_s+1/2) = (y_e-y_s)/(x_e-x_s) 1/2$

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm

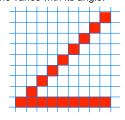
- This is still floating point
- But: only sign of d matters
- Thus: can multiply everything by 2(x_e-x_s)

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm

```
Bresenham( int xs, ys, xe, ye ) {
    int y= ys;
    incrE= 2(ye - ys);
    incrNE= 2((ye - ys) - (xe-xs));
    for( int x= xs; x<= xe; x++ ) {
        drawPixel( x, y );
        if( d<= 0 ) d+= incrE;
        else { d+= incrNE; y++; }
    }
```

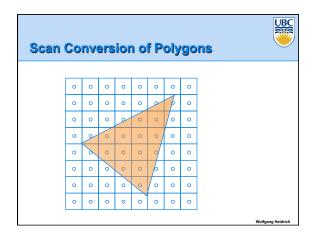

olfgang Heidric

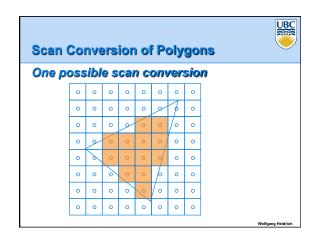
Scan Conversion of Lines

Discussion

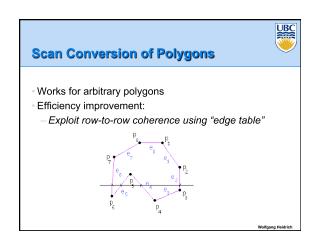
- · Bresenham sets same pixels as DDA
- Intensity of line varies with its angle!

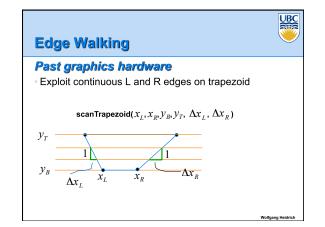
Wolfmann Heidrich

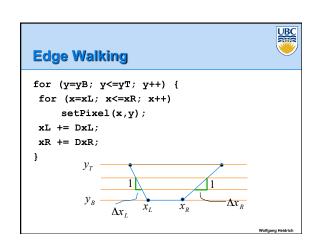

Scan Conversion of Lines

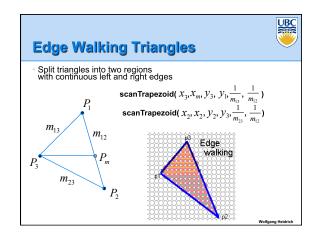


Discussion


- Bresenham
 - Good for hardware implementations (integer!)
- DDA
 - May be faster for software (depends on system)!
 - Floating point ops higher parallelized (pipelined)
 - E.g. RISC CPUs from MIPS, SUN
 - No if statements in inner loop
 - More efficient use of processor pipelining


Wolfgang Heidrich





Scan Conversion of Polygons A General Algorithm Intersect each scanline with all edges Sort intersections in x Calculate parity to determine in/out Fill the 'in' pixels

Edge Walking Triangles Issues Many applications have small triangles Setup cost is non-trivial Clipping triangles produces non-triangles This can be avoided through re-triangulation, as discussed

Coming Up: Friday More scan conversion Lecture by Anika