Lighting
Scan Conversion

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 2
Due Monday, Feb 28

Homework 3
Discussed in labs next wee

Quiz 1

Discussed in labs this week
Reading

Chapter 9, 3
Out of Town Friday

Anika will fill in for me

Wolfgang Heidrich

The Rendering Pipeline

Geometry | | Model/View | | . . _,| Perspective - |

Database Transform. LEiiig Transform. Clipping “
Scan | . 1l Depth) . i Frame-

Conversion =gy Test Blending buffer

Wolfgang Heidrich

Lighting

Goal

Model the interaction of light with surfaces to render
realistic images

Contributing Factors
Light sources
Shape and color
Surface materials
How surfaces reflect light
Transport of light

How light moves in a scene (global illumination, later
in the course)

Wolfgang Heidrich

C
=)
@)

!!}
:'
1

Types of Reflection

Specular (a.k.a. mirror or regular) reflection causes light to
propagate without scattering.

K

Diffuse reflection sends light in all directions with equal

energy. ﬁé\
Mixed reflection is a weighted
combination of specular and diffuse. M

Wolfgang Heidrich

Types of Reflection

retro-reflection occurs when incident energy reflects in
directions close to the incident direction, for a wide

range of incident directions.

gloss is the property of a material surface that involves
mixed reflection and is responsible for the mirror like

appearance of rough surfaces.

Wolfgang Heidrich

Specular Reflection

.iC
B[
mo

]
)

Geometry of specular (mirror) reflection

[n

r =-1+2(nel)n

(nel)
ala
-l
UBC
Lambert’s “Law”
Lambert's Cosine Law

angles with the normal.

Intuitively: cross-sectional area of
the “beam” intersecting an element
of surface area is smaller for greater

Wolfgang Heidrich

.}C
e o
mo)

]
)

Computing Diffuse Reflection

Depends on zngle of incidence: angle between surface

normal and incoming light ;
n
[diffuse = ky Ilight cos 0

In practice use vector arithmetic 5

Always normalize vectors used in lighting
n, I should be unit vectors
Scalar (B/W intensity) or 3-tuple or 4-tuple (color)
k,: diffuse coefficient, surface color
ligne incoming light intensity
lymuse- OUtgOINg light intensity (for diffuse reflection)

Wolfgang Heidrich

.}C
B[
mo

]
)

Glossy Materials -
Empirical Approximation

Angular falloff

/ t v

how might we model this falloff?

Wolfgang Heidrich

Phong Lighting

Most common lighting model in computer graphics
(Phong Bui-Tuong, 1975)

Ispecular = ksIlight (COS ¢)ns Tﬁ\\\
'y
¢

\

n, : purely empirical constant, varies
rate of falloff 4

ks: specular coefficient, highlight color /—’
0
|

no physical basis, works
ok in practice

Wolfgang Heidrich

Alternative Model

Blinn-Phong model (Jim Blinn, 1977)
Variation with better physical interpretation
h: halfway vector; r: roughness

I, (x)=k, -(h-n)" -1 (x);withh=(1+v)/2

Wolfgang Heidrich

Simple Light Sources

Types of light sources
Directional/parallel lights
E.g.sun
Homogeneous vector
(Homogeneous) point lights
Same intensity in all directions
Homogeneous point
Spot lights
Limited set of directions
Point+direction+cutoff angle

W

N

Wolfgang Heidrich

Light Sources

Area lights:

Light sources with a finite area

Can be considered a continuum of point lights
Not available in many rendering systems

Wolfgang Heidrich

Light Source Falloff

Quadratic falloff (point- and spot lights)

Brightness of objects depends on power per unit area
that hits the object

The power per unit area for a point or spot light
decreases quadratically with distance

Area 4mr?

Area 4(2r)?

Wolfgang Heidrich

Light Source Falloff

Non-quadratic falloff
Many systems allow for other falloffs
Allows for faking effect of area light sources
OpenGL / graphics hardware
1, intensity of light source
X. object point
r: distance of light from x

1
I (x)= -1
n (X) ar> +br+c °

Wolfgang Heidrich

Light Sources

Ambient lights
No identifiable source or direction
Hack for replacing true global illumination
(light bouncing off from other objects)

oy

Wolfgang Heidrich

Ambient Light Sources

Scene lit only with an ambient light source

Light Position
Not Important

Viewer Position
Not Important

Surface Angle
Not Important

Wolfgang Heidrich

Directional Light Sources

Scene lit with directional and ambient light

Light Position
Not Important

Viewer Position
Not Important

Wolfgang Heidrich

Point Light Sources

Scene lit with ambient and point light source

Wolfgang Heidrich

10

Light Sources & Transformations

Geometry: positions and directions
Standard: world coordinate system
Effect: lights fixed wrt world geometry
Demo:
Alternative: camera coordinate system
Effect: lights attached to camera (car headlights)

Points and directions undergo normal model/view
transformation

lllumination calculations: camera coords

Wolfgang Heidrich

Lighting Review

Lighting models
Ambient
Normals don’t matter
Lambert/diffuse
Angle between surface normal and light
Phong/specular
Surface normal, light, and viewpoint

Wolfgang Heidrich

11

Lighting in OpenGL

Light source: amount of RGB light emitted

Value represents percentage of full intensity
E.g., (1.0,0.5,0.5)

Every light source emits ambient, diffuse, and specular light

Materials: amount of RGB light reflected

Value represents percentage reflected
e.g., (0.0,1.0,0.5)

Interaction: multiply components
Red light (1,0,0) x green surface (0,1,0) = black (0,0,0)

Wolfgang Heidrich

Lighting in OpenGL

glLightfv(GL_LIGHTO, GL_AMBIENT, amb_light rgba);
glLightfv(GL LIGHTO, GL DIFFUSE, dif light rgba);
glLightfv(GL LIGHTO, GL SPECULAR, spec light rgba);
glLightfv(GL_LIGHTO, GL_POSITION, position);
glEnable(GL_LIGHTO);

glMaterialfv(GL_FRONT, GL_AMBIENT, ambient rgba);
glMaterialfv(GL_FRONT, GL_DIFFUSE, diffuse_rgba);
glMaterialfv(GL_ FRONT, GL_SPECULAR, specular rgba);

glMaterialfv(GL_FRONT, GL_SHININESS, n);

Wolfgang Heidrich

12

Lighting in Rendering Pipeline

Notes:
Lighting is applied to every vertex
i.e. the three vertices in a triangle
Per-vertex lighting

Will later see how the interior points of the triangle
obtain their color

This process is called shading
Will discuss in the context of scan conversion

Wolfgang Heidrich

Scan Conversion

Wolfgang Heidrich

Wolfgang Heidrich

13

The Rendering Pipeline

Geometry | | Model/View o _,| Perspective . |

Database Transform. LEiiig Transform. Clipping “
Scan | . 1l Depth . i Frame-

Conversion R Test Blending buffer

Wolfgang Heidrich

Scan Conversion - Rasterization

Convert continuous rendering primitives
into discrete fragments/pixels

Lines

Midpoint/Bresenham
Triangles

Flood fill

Scanline

Implicit formulation
Interpolation

Wolfgang Heidrich

14

Scan Conversion - Lines

Wolfgang Heidrich

Scan Conversion - Lines

Wolfgang Heidrich

15

Scan Conversion - Lines

First Attempt:
Line (s,e) given in device coordinates

Create the thinnest line that connects start point and
end point without gap

Assumptions for now:
Start point to the left of end point: xs< xe

Slope of the line between 0 and 1 (l.e. elevation
between 0 and 45 degrees:

Osye—ys
Xe — X§

<1

Wolfgang Heidrich

Scan Conversion of Lines -
Digital Differential Analyzer

First Attempt:

dda(float xs, ys, xe, ye) {
// assume xs < xe, and slope m between 0 and 1
float m= (ye-ys)/(xe-xs);
float y=round(ys);
for(int x=round(xs) ; x<=xe ; x++) {
drawPixel(x, round(y));
y=ytm;
}
b

Wolfgang Heidrich

16

Scan Conversion of Lines

DDA:

Wolfgang Heidrich

Scan Conversion of Lines
Midpoint Algorithm

Moving horizontally along x direction

Draw at current y value, or move up vertically to y+1?

below line

Candidates

Check if midpoint between two possible pixel centers above ii

Top pixel: (x+1,y+1)
Bottom pixel: (x+1, y)

Midpoint: (x+1, y+.5)

Check if midpoint above or below line
Below: top pixel

Above: bottom pixel

Key idea behind Bresenham Alg.

]

Wolfgang Heidrich

17

Scan Conversion of Lines

Idea: decision variable
dda(float xs, ys, xe, ye) {

float d= 0.0;

float m= (ye-ys)/(xe-xs);

int y=round(ys);

for(int x=round(xs) ; x<=xe ; x++) {
drawPixel(x,y);
d= d+m;
if(d>=0.5) { d=d-1.0; y++; }

Wolfgang Heidrich

Scan Conversion of Lines
Bresenham Algorithm (’63)

Use decision variable to generate purely integer
algorithm

Explicit line equation:
e S
(x, - x,)
Implicit version:
L) = L2 ey (y-3) =0
('xe - xS)
In particular for specific x, y, we have
L(x,y)>0 if (x,y) below the line, and
L(x,y)<0 if (x,y) above the line

Wolfgang Heidrich

18

Scan Conversion of Lines
Bresenham Algorithm

Decision variable: after drawing point (x,y) decide
whether to draw

(xt+1,y): case E (for “east”)
(xt+1,y+1): case NE (for “north-east’)
Check whether (x+ 1,y+1/2) is above or below line

d=L(x+1,y+%)

Point above line if and only if d<0

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
Problem: how to update d?
Case E (point above line, d<= 0)
X=X+1;
d= L(x+2, y+1/2)= d+ (y,-y)/(x,x,)
Case NE (point below line, d> 0)
xX=x+1; y=y+1;
d= L(x+2, y+3/2)= d+ (v,-y)/(x,x,) -1
Initialization:
d= L(x+1, y+1/2)= (y,y)(x,x,) —1/2

Wolfgang Heidrich

19

Scan Conversion of Lines

Bresenham Algorithm
This is still floating point
But: only sign of d matters
Thus: can multiply everything by 2(x.-x,)

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
Bresenham(int xs, ys, xe, ye) {
int y=1ys;
incrE= 2(ye - ys);
incrNE= 2((ye - ys) — (xe-xs));
for(int x=xs ; x<=xe ; x++) {
drawPixel(x,y);
if(d<=0) d+=incrE;
else { d+= incrNE; y++; }

Wolfgang Heidrich

20

Scan Conversion of Lines

Discussion
Bresenham sets same pixels as DDA
Intensity of line varies with its angle!

Wolfgang Heidrich

Scan Conversion of Lines

Discussion
Bresenham
Good for hardware implementations (integer!)
DDA

May be faster for software (depends on system)!
Floating point ops higher parallelized (pipelined)

E.g. RISC CPUs from MIPS, SUN
No if statements in inner loop
More efficient use of processor pipelining

Wolfgang Heidrich

21

Scan Conversion of Polygons

(e]
o
(e]
(o]
(o]
—|
(e]
o

o
o
o
0o

o [o4w_| o
o
o

Wolfgang Heidrich

Scan Conversion of Polygons

One possible scan conversion

(¢] o (¢] o (¢] o (¢] o

ooooo/o/ﬁo
ooo/o/oo/oo

o O

Wolfgang Heidrich

22

Scan Conversion of Polygons

A General Algorithm
Intersect each scanline with all edges
Sort intersections in x
Calculate parity to determine in/out
Fill the ‘in’ pixels
‘—’\
TN,
e 2
! /\\ |

s

Wolfgang Heidrich

Scan Conversion of Polygons

Works for arbitrary polygons
Efficiency improvement:
Exploit row-to-row coherence using “edge table”

Wolfgang Heidrich

23

Edge Walking

Past graphics hardware

Exploit continuous L and R edges on trapezoid
scanTrapezoid(xL,XR,yB,yT, AxL, AXR)
Yr R //ﬁ
—1

Va /—J\’—/k——m

X X R
Ax L R
L

Wolfgang Heidrich

Edge Walking

for (y=yB; y<=yT; y++) {

for (x=xL; x<=xR; x++)
setPixel (x,y) ;

xL += DxL;

xR += DxR;

}
Yr \X /'
1 11
ey
AxL L R

Wolfgang Heidrich

24

Edge Walking Triangles

Split triangles into two regions
with continuous left and right edges

1 1
» scanTrapezoid(X5, X,,, V3, V1, ——,)
13
) 11
scanTrapezoid(X,, X,, V), y3,7,
23

m,

OG00S0 D000000000

Wolfgang Heidrich

Edge Walking Triangles

Issues

Many applications have small triangles
Setup cost is non-trivial

Clipping triangles produces non-triangles

This can be avoided through re-triangulation, as
discussed

Wolfgang Heidrich

Coming Up:

Friday
More scan conversion
Lecture by Anika

Wolfgang Heidrich

26

