

Wolfgang Heidrich

olfgang Heidrich

Course News

Assignment 1

Due next Monday

No new homework this week Homework 2

- Exercise problems for perspective
- Discussed in labs this week

Quiz 1

- · Wed, Jan 26. Duration: 40 minutes
- Topics: affine and perspective transformations

Wolfgang Heidrich

Course News (cont.)

Reading list

Previously published chapters numbers were from an old book version...

Reading for Quiz (new book version):

- Math prereq: Chapter 2.1-2.4, 4
- Intro: Chapter 1
- · Affine transformations: Ch. 6 (was: Ch. 5, old book)
- Perspective: Ch 7 (was: Ch. 6, old book)
- Also reading for this week...

Wolfgang Heidrich

The Rendering Pipeline Geometry Processing Geometry Processing Highting Perspective Transform. Clipping Transform. Depth Test Conversion Rasterization Fragment Processing Wottgang Heidrich

Projective Rendering Pipeline viewing world object O₂W W₂V VCS ocs wcs projection modeling viewing transformation transformation transformation clipping C2N ccs OCS - object/model coordinate system perspective WCS - world coordinate system divide normalized device N2D VCS - viewing/camera/eve coordinate system **NDCS** viewport CCS - clipping coordinate system transformation device NDCS - normalized device coordinate system DCS DCS - device/display/screen coordinate system

Projective Transformations

Convention:

- Viewing frustum is mapped to a specific parallelpiped
 Normalized Device Coordinates (NDC)
- Only objects inside the parallelpiped get rendered
- Which parallelpied is used depends on the rendering system

OpenGL:

- Left and right image boundary are mapped to x=-1 and x=+1
- Top and bottom are mapped to y=-1 and y=+1
- Near and far plane are mapped to -1 and 1

Wolfgang Heidrich

UBC

UBC

Perspective Matrices:

- glFrustum(left, right, bottom, top, near, far)
- Specifies perspective transform (near, far are always

Convenience Function:

- gluPerspective(fovy, aspect, near, far)
- Another way to do perspective

Projective Transformations

Properties:

- All transformations that can be expressed as homogeneous 4x4 matrices (in 3D)
- 16 matrix entries, but multiples of the same matrix all describe the same transformation
 - 15 degrees of freedom
 - The mapping of 5 points uniquely determines the transformation

Projective Transformations

Properties

- · Lines are mapped to lines and triangles to triangles
- · Parallel lines do not remain parallel
 - E.g. rails vanishing at infinity
- · Affine combinations are not preserved
 - E.g. center of a line does not map to center of projected line (perspective foreshortening)
 - The center of a line segment does **not**, in general map to the center of the transformed line segment
 - Same for other points in triangles

Orthographic Camera Projection

- Camera's back plane parallel to lens
- Infinite focal length
- No perspective convergence
- Just throw away z values
- OpenGL:
- glOrtho
- gluOrtho2D

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Normals & Affine Transformations Question: If we transform some geometry with an affine transformation, how does that affect the normal vector? Consider Rotation Translation Scaling Shear

UBC

Homogeneous Planes And Normals

Planes in Cartesian Coordinates:

$$\{(x, y, z)^T \mid n_x x + n_y y + n_z z + d = 0\}$$

• $n_{\rm s}, n_{\rm p}, n_{\rm p}$ and d are the parameters of the plane (normal and distance from origin)

Planes in Homogeneous Coordinates:

$$\{[x,y,z,w]^T \mid n_x x + n_y y + n_z z + dw = 0\}$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Planes in homogeneous coordinates are represented as <u>row vectors</u>

- $\mathsf{E}=[n_x, n_y, n_z, d]$
- Condition that a point $[x,y,z,w]^T$ is located in E

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in E = [n_x, n_y, n_z, d] \Leftrightarrow [n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Transformations of planes

$$[n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0 \iff T([n_x, n_y, n_z, d]) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = 0$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Transformations of planes

$$[n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0 \Leftrightarrow ([n_x, n_y, n_z, d] \cdot \mathbf{A}^{-1}) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = 0$$

- Works for $T([n_x, n_y, n_z, d]) = [n_x, n_y, n_z, d]\mathbf{A}^{-1}$
- Thus: planes have to be transformed by the inverse of the affine transformation (multiplied from left as a row vector)!

Wolfgang Heidrich

Homogeneous Planes And Normals

Homogeneous Normals

- The plane definition also contains its normal
- Normal written as a vector $[n_x, n_y, n_z, 0]^T$

$$\begin{pmatrix} \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} \end{pmatrix} = 0 \Leftrightarrow ((\mathbf{A}^{-T} \cdot \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix}) \cdot (\mathbf{A} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix})) = 0$$

Thus: the normal to any surface has to be transformed by the inverse transpose of the affine transformation (multiplied from the right as a column vector)!

Wolfgang Heidrich

Transforming Homogeneous Normals

Inverse Transpose of

- Rotation by α
 - -Rotation by lpha
- Scale by s
 - Scale by 1/s
- Translation by t

 Identity matrix!
- Shear by a along x axis
 - Shear by -a along y axis

Wolfgang Heidrich

