

Perspective Projection (cont.) Transformations of Normal Vectors

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 1

Due next Monday

No new homework this week Homework 2

- Exercise problems for perspective
- Discussed in labs this week

Quiz 1

- Wed, Jan 26. Duration: 40 minutes
- Topics: affine and perspective transformations

Course News (cont.)

Reading list

Previously published chapters numbers were from an old book version...

Reading for Quiz (new book version):

- Math prereq: Chapter 2.1-2.4, 4
- Intro: Chapter 1
- Affine transformations: Ch. 6 (was: Ch. 5, old book)
- Perspective: Ch 7 (was: Ch. 6, old book)
 - Also reading for this week…

Convention:

- Viewing frustum is mapped to a specific parallelpiped
 - Normalized Device Coordinates (NDC)
- Only objects inside the parallelpiped get rendered
- Which parallelpied is used depends on the rendering system

OpenGL:

- Left and right image boundary are mapped to x=-1 and x=+1
- Top and bottom are mapped to y=-1 and y=+1
- Near and far plane are mapped to -1 and 1

OpenGL Convention

Camera coordinates

Clipping Coordinates

Wolfgang Heidrich

Perspective Derivation

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} E & 0 & A & 0 \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w' \end{bmatrix} = \begin{bmatrix} x' \\ 0 & F & B & 0 \\ 0 & 0 & C & D \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ z \\ z' = Cz + D \\ w' = -z \end{bmatrix} \qquad \begin{aligned} x &= left & \rightarrow x' / w' = 1 \\ x &= right & \rightarrow x' / w' = -1 \\ y &= top & \rightarrow y' / w' = -1 \\ y &= bottom & \rightarrow y' / w' = -1 \\ z &= -near & \rightarrow z' / w' = 1 \\ z &= -far & \rightarrow z' / w' = -1 \end{aligned}$$

$$y' = Fy + Bz$$
, $\frac{y'}{w'} = \frac{Fy + Bz}{w'}$, $1 = \frac{Fy + Bz}{w'}$, $1 = \frac{Fy + Bz}{-z}$, $1 = F \frac{y}{-z} + B \frac{z}{-z}$, $1 = F \frac{y}{-z} - B$, $1 = F \frac{top}{-(-near)} - B$, $1 = F \frac{top}{near} - B$

Perspective Derivation

similarly for other 5 planes 6 planes, 6 unknowns

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Perspective Example

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & \frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & \frac{t+b}{t-b} & 0\\ 0 & 0 & \frac{-(f+n)}{f-n} & \frac{-2fn}{f-n}\\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -5/3 & -8/3\\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -5/3 & -8/3 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Alternative specification of symmetric frusta

- \bullet Field-of-view (fov) α
- Fov/2
- Field-of-view in y-direction (fovy) + aspect ratio

Perspective Matrices in OpenGL

Perspective Matrices:

- glFrustum(left, right, bottom, top, near, far)
 - Specifies perspective transform (near, far are always positive)

Convenience Function:

- gluPerspective(fovy, aspect, near, far)
 - Another way to do perspective

Wolfgang Heidrich

Projective Transformations

Properties:

- All transformations that can be expressed as homogeneous 4x4 matrices (in 3D)
- 16 matrix entries, but multiples of the same matrix all describe the same transformation
 - 15 degrees of freedom
 - The mapping of 5 points uniquely determines the transformation

Properties

- Lines are mapped to lines and triangles to triangles
- Parallel lines do not remain parallel
 - E.g. rails vanishing at infinity
- Affine combinations are not preserved
 - E.g. center of a line does not map to center of projected line (perspective foreshortening)
 - The center of a line segment does **not**, in general map to the center of the transformed line segment
 - Same for other points in triangles

Wolfgang Heidrich

Orthographic Camera Projection

- Camera's back plane parallel to lens
- Infinite focal length
- No perspective convergence
- Just throw away z values
- OpenGL:
 - glOrtho
 - gluOrtho2D

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Window-To-Viewport Transformation

Generate pixel coordinates

- Map x, y from range -1...1 (normalized device coordinates) to pixel coordinates on the screen
- Map z from -1...1 to 0...1 (used later for visibility)
- Involves 2D scaling and translation

Wolfgang Heidrich

Homogeneous Planes & Normals

Normals & Affine Transformations

Question:

• If we transform some geometry with an affine transformation, how does that affect the normal vector?

Consider

- Rotation
- Translation
- Scaling
- Shear

Wolfgang Heidrich

Normals & Affine Transformations

Want:

 Representation for normals that allows us to easily describe how they change under affine transformation

Why?

 Normal vectors will be of special interest when we talk about lighting (next week)

Homogeneous Planes And Normals

Planes in Cartesian Coordinates:

$$\{(x, y, z)^T \mid n_x x + n_y y + n_z z + d = 0\}$$

• n_x , n_y , n_z , and d are the parameters of the plane (normal and distance from origin)

Planes in Homogeneous Coordinates:

$$\{[x, y, z, w]^T \mid n_x x + n_y y + n_z z + dw = 0\}$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Planes in homogeneous coordinates are represented as <u>row vectors</u>

- $\mathsf{E}=[n_x, n_y, n_z, d]$
- Condition that a point $[x,y,z,w]^T$ is located in E

$$\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \in E = [n_x, n_y, n_z, d] \Leftrightarrow [n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0$$

Homogeneous Planes And Normals

Transformations of planes

$$\begin{bmatrix} n_x, n_y, n_z, d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0 \iff T([n_x, n_y, n_z, d]) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = 0$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Transformations of planes

$$\begin{bmatrix} n_x, n_y, n_z, d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = 0 \iff ([n_x, n_y, n_z, d] \cdot \mathbf{A}^{-1}) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}) = 0$$

- Works for $T([n_x, n_y, n_z, d]) = [n_x, n_y, n_z, d] \mathbf{A}^{-1}$
- Thus: planes have to be transformed by the *inverse* of the affine transformation (multiplied from left as a row vector)!

Homogeneous Planes And Normals

Homogeneous Normals

- The plane definition also contains its normal
- Normal written as a vector $[n_x, n_y, n_z, 0]^T$

$$\begin{pmatrix} \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix}) = 0 \Leftrightarrow ((\mathbf{A}^{-T} \cdot \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix}) \cdot (\mathbf{A} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix})) = 0$$

 Thus: the normal to any surface has to be transformed by the inverse transpose of the affine transformation (multiplied from the right as a column vector)!

Wolfgang Heidrich

Transforming Homogeneous Normals

Inverse Transpose of

- ullet Rotation by lpha
 - Rotation by lpha
- Scale by s
 - Scale by 1/s
- Translation by t
 - Identity matrix!
- Shear by a along x axis
 - Shear by -a along y axis

Coming Up:

Wednesday:

• Quiz...!

Friday

· Lighting/shading