

Affine Transformations & Homogeneous Coordinates

Wolfgang Heidrich

Wolfgang Heidrich

UBC

Assignment 1

- Due March 31
- More at end of lecture

Homework 1

- Exercise problems for transformations
- Discussed in labs next week

Reading

Chapter 5

Recap: Modeling and Viewing Transformation

Affine transformations

- Linear transformations + translations
- Can be expressed as a 3x3 matrix + 3 vector

$$x' = M \cdot x + t$$

In general:

- Transformation of geometry into coordinate system where operation becomes simpler
- Perform operation
- Transform geometry back to original coordinate system

Wolfgang Heidrich

Recap: Compositing of Affine Transformations

Example: 2D rotation around arbitrary center

Consider this transformation

$$\mathbf{x'} = \mathbf{Id} \cdot (\overline{R(\phi) \cdot (\mathbf{Id} \cdot \mathbf{x} - \mathbf{t})}) + \mathbf{t}$$
translate by \mathbf{t}

• i.e:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \left(\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \cdot \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) + \begin{pmatrix} a \\ b \end{pmatrix}$$

Two different interpretations of composite:

- 1) read from inside-out as transformation of object
- 2) read from outside-in as transformation of the coordinate frame by the inverse of the stated operation

Wolfgang Heidrich

Wolfgang Heidrich

Recap: Compositing of Affine Transformations Example scene:

First Interpretation:

Step 1: translate object by –t (move to origin)

Walfaana Haidrich

Recap: Compositing of Affine Transformations

First Interpretation:

- Step 2: rotate object by Φ

First Interpretation:

Step 3: translate object by t (move back)

Recap: Compositing of Affine Transformations

Example scene, second interpretation:

Second interpretation:

Step 1: translate frame (move origin to object)

Walfaana Haidrich

Recap: Compositing of Affine Transformations

Second interpretation:

Step 2: rotate frame by -Φ (inverse of rot. by Φ)

Second interpretation:

Step 3: translate frame back (vector t in new frame!)

Wolfgang Heidrich

Recap: Compositing of Affine Transformations

NOTES:

- All transformations are always with respect to the current coordinate frame
- The results of both interpretations are identical
 - Note that the object has the same relative position and orientation with respect to the coordinate frame!

Compositing of Affine Transformations

Another Example: 3D rotation around arbitrary axis

- Rotate axis to z-axis
- Rotate z-axis back to original axis
- Composite transformation:

$$R(v, \phi) = R_z^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\phi) \cdot R_y(\beta) \cdot R_z(\alpha)$$
$$= (R_v(\beta) \cdot R_z(\alpha))^{-1} \cdot R_z(\phi) \cdot (R_v(\beta) \cdot R_z(\alpha))$$

Wolfgang Heidrich

Compositing of Affine Transformations

Yet another example (on whiteboard):

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} \cos \frac{\pi}{4} & -\sin \frac{\pi}{4} \\ \sin \frac{\pi}{4} & \cos \frac{\pi}{4} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Properties of Affine Transformations

Definition:

· A linear combination of points or vectors is given as

$$\mathbf{x} = \sum_{i=1}^{n} a_i \cdot \mathbf{x}_i, \text{ for } a_i \in \mathfrak{R}$$

An affine combination of points or vectors is given as

$$\mathbf{x} = \sum_{i=1}^{n} a_i \cdot \mathbf{x}_i$$
, with $\sum_{i=1}^{n} a_i = 1$

Wolfgang Heidrich

Properties of Affine Transformations

Example:

Affine combination of 2 points

$$\mathbf{x} = a_1 \cdot \mathbf{x}_1 + a_2 \cdot \mathbf{x}_2, \text{ with } a_1 + a_2 = 1$$

$$= (1 - a_2) \cdot \mathbf{x}_1 + a_2 \cdot \mathbf{x}_2$$

$$= \mathbf{x}_1 + a_2 \cdot (\mathbf{x}_2 - \mathbf{x}_1)$$

Properties of Affine Transformations

Definition:

- A convex combination is an affine combination where all the weights a_i are positive
- Note: this implies $0 \le a_i \le 1$, i=1...n

Wolfgang Heidrich

Properties of Affine Transformations

Example:

Convex combination of 3 points

$$\mathbf{x} = \alpha \cdot \mathbf{x}_1 + \beta \cdot \mathbf{x}_2 + \gamma \cdot \mathbf{x}_3$$

with $\alpha + \beta + \gamma = 1, \ 0 \le \alpha, \beta, \gamma \le 1$

 α, β, and γ are called Barycentric coordinates

Properties of Affine Transformations

Theorem:

- The following statements are synonymous
 - − A transformation T(x) is affine, i.e.:

$$\mathbf{x'} = T(\mathbf{x}) := \mathbf{M} \cdot \mathbf{x} + \mathbf{t},$$

for some matrix M and vector t

-T(x) preserves affine combinations, i.e.

$$T(\sum_{i=1}^{n} a_i \cdot \mathbf{x}_i) = \sum_{i=1}^{n} a_i \cdot T(\mathbf{x}_i), \text{ for } \sum_{i=1}^{n} a_i = 1$$

- T(x) maps parallel lines to parallel lines

Wolfgang Heidrich

Properties of Affine Transformations

Preservation of affine combinations:

 Can compute transformation of every point on line or triangle by simply transforming the control points

Homogeneous Coordinates

Homogeneous representation of points:

- Add an additional component w=1 to all points
- All multiples of this vector are considered to represent the same 3D point
- Use square brackets (rather than round ones) to denote homogeneous coordinates (different from text book!)

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \cdot w \\ y \cdot w \\ z \cdot w \\ w \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ w \end{bmatrix}, \forall w \neq 0$$

Wolfgang Heidrich

Geometrically In 2D

Cartesian Coordinates:

Homogeneous Matrices

Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \\ t_z \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & t_x \\ 0 & 0 & 0 & t_y \\ 0 & 0 & 0 & t_z \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Homogeneous Matrices

Combining the two matrices into one:

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & 0 \\ m_{2,1} & m_{2,2} & m_{2,3} & 0 \\ m_{3,1} & m_{3,2} & m_{3,3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & t_x \\ 0 & 0 & 0 & t_y \\ 0 & 0 & 0 & t_z \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & t_x \\ m_{2,1} & m_{2,2} & m_{2,3} & t_y \\ m_{3,1} & m_{3,2} & m_{3,3} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Homogeneous Coordinates -**Composite Transformations**

Example: 2D rotation around arbitrary center

rotate by ϕ • This: $\mathbf{x}' = \mathbf{Id} \cdot (R(\phi) \cdot (\mathbf{Id} \cdot \mathbf{x} - \mathbf{t})) + \mathbf{t}$

translate by -t translate by t

Corresponds to this in full expansion:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \left(\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \cdot \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) + \begin{pmatrix} a \\ b \end{pmatrix}$$

Homogeneous Coordinates – Composite Transformations

Example: 2D rotation around arbitrary center

Euclidean coordinates:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \left(\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \cdot \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) + \begin{pmatrix} a \\ b \end{pmatrix} \right)$$

Homogeneous coordinates:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & a \\ 1 & b \\ & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} \cdot \begin{bmatrix} 1 & -a \\ 1 & -b \\ & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
translation

Welfgang Heidrich

Homogeneous Transformations

Notes:

- A composite transformation is now just the product of a few matrixes
- Rather than multiply each point sequentially with 3 matrices, first multiply the matrices, then multiply each point with only one (composite) matrix
 - Much faster for large # of points!
- The composite matrix describing the affine transformation always has the bottom row 0,0,1 (2D), or 0,0,0,1 (3D)

Homogeneous Matrices

Note:

 Multiplication of the matrix with a constant does not change the transformation!

$$\widetilde{T}\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} m_{1,1} \cdot k & m_{1,2} \cdot k & m_{1,3} \cdot k & t_x \cdot k \\ m_{2,1} \cdot k & m_{2,2} \cdot k & m_{2,3} \cdot k & t_y \cdot k \\ m_{3,1} \cdot k & m_{3,2} \cdot k & m_{3,3} \cdot k & t_z \cdot k \\ 0 & 0 & 0 & k \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x' \cdot k \\ y' \cdot k \\ z' \cdot k \\ k \end{bmatrix}$$

$$\equiv \begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = T \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Homogeneous Vectors

Earlier discussion describes points only

- What about vectors (directions)?
- What is the affine transformation of a vector?
 - Rotation
 - Scaling
 - Translation

Vectors are invariant under translation!

Homogeneous Vectors

Representing vectors in homogeneous coordinates

- Need representation that is only affected by linear transformations, but not by translations
- This is achieved by setting *w*=0

$$T\begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 0 \end{pmatrix} = \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} & t_x \\ m_{2,1} & m_{2,2} & m_{2,3} & t_y \\ m_{3,1} & m_{3,2} & m_{3,3} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 0 \end{bmatrix} = \begin{bmatrix} x' \\ y' \\ z' \\ 0 \end{bmatrix}$$

Wolfgang Heidrich

Homogeneous Coordinates

Properties

- Unified representation as 4-vector (in 3D) for
 - Points
 - Vectors / directions
- Affine transformations become 4x4 matrices
 - Composing multiple affine transformations involves simply multiplying the matrices
 - 3D affine transformations have 12 degrees of freedom
 - Need mapping of 4 points to uniquely define transformation

Modeling Transformation

Purpose:

- Map geometry from local object coordinate system into a global world coordinate system
- Same as placing objects

Transformations:

- Arbitrary affine transformations are possible
 - Even more complex transformations may be desirable, but are not available in hardware
 - Freeform deformations

Viewing Transformation

Purpose:

- Map geometry from world coordinate system into camera coordinate system
- Camera coordinate system is right-handed, viewing direction is negative z-axis
- Same a placing camera

Transformations:

- Usually only rigid body transformations
 - Rotations and translations

Wolfgang Heidrich

Model/View Transformation

Combine modeling and viewing transform.

- Combine both into a single matrix
- Saves computation time if many points are to be transformed
- Possible because the viewing transformation directly follows the modeling transformation without intermediate operations

Coming Up

Next time:

- Transformation hierarchies
- OpenGL commands for transformations/drawing

Next week:

Perspective transformations