

The Rendering Pipeline – Transformations

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 0

Due today!

Assignment 1

- Will be out Wednesday
- Due January 31

Homework 1

- Exercise problems for transformations
- Discussed in labs next week

Reading

Chapter 5

Modeling and Viewing Transformation

Affine transformations

- Linear transformations + translations
- Can be expressed as a 3x3 matrix + 3 vector

$$x' = M \cdot x + t$$

Scaling

Scaling

 A coordinate means multiplying each of its components by a scalar

Uniform scaling

• This scalar is the same for all components:

Scaling (2D)

Scaling operation:
$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} ax \\ by \end{pmatrix}$$

Wolfgang Heidrich

Scaling (3D)

Scaling operation:
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} ax \\ by \\ cz \end{pmatrix}$$

Or, in matrix form:
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

2D Rotation From Trig Identities

$$x = r \cos (\phi)$$

$$y = r \sin (\phi)$$

$$x' = r \cos (\phi + \theta)$$

$$y' = r \sin (\phi + \theta)$$

$$Trig Identity...$$

$$x' = r \cos(\phi) \cos(\theta) - r \sin(\phi) \sin(\theta)$$

$$y' = r \sin(\phi) \cos(\theta) + r \cos(\phi) \sin(\theta)$$
Substitute...

 $x' = x \cos(\theta) - y \sin(\theta)$

 $y' = x \sin(\theta) + y \cos(\theta)$

Wolfgang Heidrich

2D Rotation Matrix

Easy to capture in matrix form:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Even though sin(q) and cos(q) are nonlinear functions of q,

- · x' is a linear combination of x and y
- y' is a linear combination of x and y

3D Rotation

About x axis: $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} x' \\ y \\ z' \end{pmatrix}$

About y axis:
$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{pmatrix} \cdot \begin{pmatrix} x' \\ y \\ z \end{pmatrix}$$

About z axis: $\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

Shear

Shear along x axis

push points to right in proportion to height

Shear

Shear along x axis

• push points to right in proportion to height

Wolfgang Heidrich

Reflection

UBC

Reflect across x axis

Mirror

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Reflection

Reflect across x axis

Mirror

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

Wolfgang Heidrich

Affine Transformations

Translation:

Add a constant (2D or 3D) vector:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

In general:

- Transformation of geometry into coordinate system where operation becomes simpler
- Perform operation
- Transform geometry back to original coordinate system

Wolfgang Heidrich

Compositing of Affine Transformations

Example: 2D rotation around arbitrary center

Consider this transformation

$$\mathbf{x'} = \mathbf{Id} \cdot (R(\phi) \cdot (\mathbf{Id} \cdot \mathbf{x} - \mathbf{t})) + \mathbf{t}$$
translate by \mathbf{t}

• i.e:

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \left(\begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \cdot \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) + \begin{pmatrix} a \\ b \end{pmatrix}$$

Composite transformation:

Note that this is again an affine transformation

$$\mathbf{x}' = \mathbf{Id} \cdot (R(\phi) \cdot (\mathbf{Id} \cdot \mathbf{x} - \mathbf{t})) + \mathbf{t}$$

$$= \mathbf{Id} \cdot (R(\phi) \cdot \mathbf{x} - R(\phi) \cdot \mathbf{t}) + \mathbf{t}$$

$$= R(\phi) \cdot \mathbf{x} + (R(\phi) \cdot (-\mathbf{t}) + \mathbf{t})$$

$$= R(\phi) \cdot \mathbf{x} + \mathbf{t}'$$

This holds in general!

 All composites of affine transformations are themselves affine transformations!

Wolfgang Heidrich

Compositing of Affine Transformations

Two different interpretations of composite:

- 1) read from inside-out as transformation of object
 - − 1a) Translate object by −t
 - 1b) Rotate object by Φ
 - 1c) Translate object by t
- 2) read from outside-in as transformation of the coordinate frame
 - 2c) Translate frame by t
 - 2b) Rotate frame by $-\Phi$ (i.e. rotate object by Φ)
 - − 2a) Translate frame by −t

First Interpretation:

Step 2: rotate object by Φ

Wolfgang Heidrich

Compositing of Affine Transformations

First Interpretation:

Step 3: translate object by t (move back)

Compositing of Affine Transformations Example scene, second interpretation: Wolfgang Heldrich

Second interpretation:

Step 2: rotate frame by -Φ (i.e rotate obj. by Φ)

Compositing of Affine Transformations

Second interpretation:

Step 3: translate frame back (vector -t in new frame!)

NOTES:

- All transformations are always with respect to the current coordinate frame
- The results of both interpretations are identical
 - Note that the object has the same relative position and orientation with respect to the coordinate frame!

Wolfgang Heidrich

Compositing of Affine Transformations

Another Example: 3D rotation around arbitrary axis

- Rotate axis to z-axis
- Rotate z-axis back to original axis
- Composite transformation:

$$R(\nu, \phi) = R_z^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\phi) \cdot R_y(\beta) \cdot R_z(\alpha)$$
$$= (R_\nu(\beta) \cdot R_z(\alpha))^{-1} \cdot R_z(\phi) \cdot (R_\nu(\beta) \cdot R_z(\alpha))$$

Properties of Affine Transformations

Definition:

• A linear combination of points or vectors is given as

$$\mathbf{x} = \sum_{i=1}^{n} a_i \cdot \mathbf{x}_i, \text{ for } a_i \in \mathfrak{R}$$

An affine combination of points or vectors is given as

$$\mathbf{x} = \sum_{i=1}^{n} a_i \cdot \mathbf{x}_i$$
, with $\sum_{i=1}^{n} a_i = 1$

Wolfgang Heidrich

Properties of Affine Transformations

Example:

Affine combination of 2 points

$$\mathbf{x} = a_1 \cdot \mathbf{x}_1 + a_2 \cdot \mathbf{x}_2, \text{ with } a_1 + a_2 = 1$$

$$= (1 - a_2) \cdot \mathbf{x}_1 + a_2 \cdot \mathbf{x}_2$$

$$= \mathbf{x}_1 + a_2 \cdot (\mathbf{x}_2 - \mathbf{x}_1)$$

Properties of Affine Transformations

Definition:

- A convex combination is an affine combination where all the weights a_i are positive
- Note: this implies $0 \le a_i \le 1$, i=1...n

Wolfgang Heidrich

Properties of Affine Transformations

Example:

Convex combination of 3 points

$$\mathbf{x} = \alpha \cdot \mathbf{x}_1 + \beta \cdot \mathbf{x}_2 + \gamma \cdot \mathbf{x}_3$$

with $\alpha + \beta + \gamma = 1, \ 0 \le \alpha, \beta, \gamma \le 1$

 α, β, and γ are called Barycentric coordinates

Properties of Affine Transformations

Theorem:

- The following statements are synonymous
 - − A transformation T(x) is affine, i.e.:

$$\mathbf{x'} = T(\mathbf{x}) := \mathbf{M} \cdot \mathbf{x} + \mathbf{t},$$

for some matrix M and vector t

-T(x) preserves affine combinations, i.e.

$$T(\sum_{i=1}^{n} a_i \cdot \mathbf{x}_i) = \sum_{i=1}^{n} a_i \cdot T(\mathbf{x}_i), \text{ for } \sum_{i=1}^{n} a_i = 1$$

- T(x) maps parallel lines to parallel lines

Wolfgang Heidrich

Properties of Affine Transformations

Preservation of affine combinations:

 Can compute transformation of every point on line or triangle by simply transforming the control points

Coming Up

This week:

- Affine Transformations with Homogeneous Coordinates
- Transformation Hierarchies

Next week

Perspective Transformations