University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Hidden Surfaces lli

Week 9, Wed Mar 17

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Review: BSP Trees

* preprocess: create binary tree
* recursive spatial partition
* viewpoint independent

Review: BSP Trees

* runtime: correctly traversing this tree enumerates
objects from back to front

* viewpoint dependent: check which side of plane
viewpoint is on at each node

 draw far, draw object in question,
draw near

N

&

=0

+<_

o

o8
Ze

-1

>
~

Review: The Z-Buffer Algorithm

* augment color framebuffer with Z-buffer or
depth buffer which stores Z value at each
pixel
* at frame beginning, initialize all pixel depths

to

* when rasterizing, interpolate depth (Z)
across polygon

» check Z-buffer before storing pixel color in
framebuffer and storing depth in Z-buffer

« don’t write pixel if its Z value is more distant
than the Z value already stored there

More: Integer Depth Buffer

* reminder from picking discussion
 depth lies in the NDC z range [0,1]
 format: multiply by 2*n -1 then round to nearest int
* where n = number of bits in depth buffer
« 24 bit depth buffer = 2224 = 16,777,216 possible
values
« small numbers near, large numbers far
« consider depth from VCS: (1<<N)*(a+Db/z)
* N = number of bits of Z precision
 a=zFar/(zFar - zNear)
* b =2zFar* zNear / (zNear - zFar)
« z = distance from the eye to the object

Review: Depth Test Precision

* reminder: perspective transformation maps
eye-space (view) z to NDC z

(Ex \|
_ o | —+Az
E 0 A Ofx| |Ex+Az Z /
0 F B O|y| |Fy+Bz _(QJ,BZ\
O 0 C Dz_ Cz+ D - < D/
0 0 -1 0f1] | -z -(C+;)
1
D
* thus: zy,=-|C+—

eye

Review: Depth Test Precision

* therefore, depth-buffer essentially stores 1/z,
rather than z!

* issue with integer depth buffers

* high precision for near objects
* low precision for far objects

A
ZNDC

-n -f Teye

Review: Depth Test Precision

low precision can lead to depth fighting for far objects

* two different depths in eye space get mapped to same
depth in framebuffer

* which object “wins” depends on drawing order and scan-
conversion

gets worse for larger ratios f:n
* rule of thumb: f:n < 1000 for 24 bit depth buffer

with 16 bits cannot discern millimeter differences in
objects at 1 km distance

demo:
sjbaker.org/steve/omniv/love your z buffer.html

Correction: Ortho Camera Projection
week4.day2, slide 18

* camera’s back plane o [x 17 [T 0 0 0ff
parallel to lens

* infinite focal length
* NO perspective

convergence
’ j 5 [2 0 0 _ right +left |
- X and y coordinates do right - lefi right = lefi
not change with respect 0 : 0o -lprbo
_ _ _ _ p'= top — bot top-bot | p
to z in this projection . . 2 far+near
'D 0 0 A 'x' 'DX_I_A' far — near far — near
0O E O Bl|y|l |Ey+B |0 0 0 !
0 0 F Clz| |Fz+C
0 0 0 1|1 1

Z-Buffer Algorithm Questions

how much memory does the Z-buffer use?

does the image rendered depend on the
drawing order?

does the time to render the image depend on
the drawing order?

how does Z-buffer load scale with visible
polygons? with framebuffer resolution?

10

Z-Buffer Pros

simple!!l

easy to implement in hardware

» hardware support in all graphics cards today
polygons can be processed in arbitrary order
easily handles polygon interpenetration

enables deferred shading

* rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

11

Z-Buffer Cons

* poor for scenes with high depth complexity

* need to render all polygons, even if
most are invisible

L]
L]

eye

» shared edges are handled inconsistently
* ordering dependent

12

Z-Buffer Cons

* requires lots of memory
* (e.g. 1280x1024x32 bits)
* requires fast memory
» Read-Modify-Write in inner loop
» hard to simulate translucent polygons

- we throw away color of polygons behind
closest one

» works if polygons ordered back-to-front

* extra work throws away much of the speed
advantage

13

Hidden Surface Removal

» two kinds of visibility algorithms
* object space methods
* Image space methods

14

Object Space Algorithms

determine visibility on object or polygon level
* using camera coordinates

resolution independent

» explicitly compute visible portions of polygons
early in pipeline

- after clipping

requires depth-sorting

* painter’s algorithm

* BSP trees

15

Image Space Algorithms

» perform visibility test for in screen coordinates
* limited to resolution of display
« Z-buffer: check every pixel independently

» performed late in rendering pipeline

16

Projective Rendering Pipeline

glVertex3f(x,y,z)
object world viewing
OCS WCS VCS alterw glFrustum(...)

N modeling viewing N PrOjeCtlor_l
transformation transformation transformation

clipping
glTranslatef(x,y,z) gluLookAt(...) Iw CCS

glRotatef(th,x,y,z)

perspective .
division |normalized

OCS - object coordinate system

glutinitWindowSize(w,h) device
WCS - world coordinate system glViewport(x,y,a,b) L NDCS
VCS - viewing coordinate system wewport_
transformation
CCS - clipping coordinate system | device
NDCS - normalized device coordinate system DCS

DCS - device coordinate system v

Rendering Pipeline

object world viewing clipping
CS WCS VCS CCS

Model/View| | Perspectivel | .. . Iw
Transform. 'g g Transform. PpIng

Geometry
Database

(4D)
normalized
device
NDCS
screen
device SCS
DCS (3D) (2D)

Scan : Depth _ Frame-
|Conversioni | e || Test [Blending buffer

18

Backface Culling

19

Back-Face Culling

on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

>

note: backface culling

— \g alone doesn’t solve the
hidden-surface problem!

Back-Face Culling

 not rendering backfacing polygons improves
performance

* by how much?

* reduces by about half the number of polygons
to be considered for each pixel

 optimization when appropriate

21

Back-Face Culling

* most objects in scene are typically “solid”
 rigorously: orientable closed manifolds

* orientable: must have two distinct sides
« cannot self-intersect

* a sphere is orientable since has
two sides, 'inside' and 'outside'.

* a Mobius strip or a Klein bottle is
not orientable

* closed: cannot “walk” from one
side to the other

* sphere is closed manifold
* plane is not

Back-Face Culling

« examples of non-manifold objects:

a single polygon

a terrain or height field

polyhedron w/ missing face

anything with cracks or holes in boundary
one-polygon thick lampshade

23

Back-face Culling: VCS

first idea:
cullif NV, <0

sometimes
misses polygons that
should be culled

24

VCS

NDCS

eye

Back-face Culling: NDCS

Y.
“ t’Z works to cullif N, >0

25

Invisible Primitives

* why might a polygon be invisible?
 polygon outside the field of view / frustum
» solved by clipping
 polygon is backfacing
* solved by backface culling
 polygon is occluded by object(s) nearer the viewpoint
* solved by hidden surface removal

26

INVISIBLEEVERYTHING

LG B H AS0c H E B2 ELLLRGG E: R Gt Ry

Blending

28

Rendering Pipeline

Geometry
Database

Model/View Lighti
Transform.| 'ghting

Perspectiv
Transform.

Clipping

Scan Texturin
Conversion g

Blending \

Frame-
buffer

29

Blending/Compositing

* how might you combine multiple elements?

 foreground color A, background color B

>0
©

aqu
and

o
VYYYYYY

Partially
transparent
Aand B

Conceptual
sub-pixel
overlay

YVvVvVveywyw

« roon
4)9o$

:

2

3¢

o~

-~

AinB
341 333
> ®4
FiO 994
222222221
POSS AT PSS
:00 “”:
338700338
33340333
PORLILD S

PENERE A NS

AoutB

YVvwvwvwvwvwyw

A atop B

wVvwvwvwvwvwvyw

4
»
»
4
4
4
»

21

¢

o

b 4

2 4

4
4
4

:

233342

b
b
)
o
"
b
)
>

o

m

W
o

Premultiplying Colors

specify opacity with alpha channel: (r,g,b,a)
* o=1: opaque, a=.5: translucent, a=0: transparent

A over B
- C=0A+(1-0)B

but what if B is also partially transparent?
- C=cA+(1-0)pB= pB+ A+ B -a B

* y=ERp+(1-Pla=p+a—oaf
« 3 multiplies, different equations for alpha vs. RGB

premultiplying by alpha
- C=yC,B’ ' =pB,A’=0A

+ C'=B'+A - 0B’

© y=p+o-op
« 1 multiply to find C, same equations for alpha and RGB

31

Texturing

32

Rendering Pipeline

Geometry Processing

Geometry | |[Model/View N |Perspectivi| .
Database } [|Transform. Lighting Transform. Clipping K

Frame-
buffer

Scan
Conversion

Texturing Blending

Rasterization Fragment Processing

33

Texture Mapping

* real life objects have
nonuniform colors,
normals

 to generate realistic
objects, reproduce
coloring & normal
variations = texture

 can often replace
complex geometric
detalls

- “ 8 4
,,,,

34

Texture Mapping

* Introduced to increase realism
» lighting/shading models not enough
* hide geometric simplicity
* images convey illusion of geometry
* map a brick wall texture on a flat polygon
* create bumpy effect on surface
» associate 2D information with 3D surface

* point on surface corresponds to a point in
texture

» “paint” image onto polygon

35

Color Texture Mapping

 define color (RGB) for each point on object
surface

* two approaches
» surface texture map
* volumetric texture

Texture Coordinates

* texture image: 2D array of color values (texels)
 assigning texture coordinates (s,t) at vertex with
object coordinates (X,y,z,w)
* use interpolated (s,t) for texel lookup at each pixel

* use value to modify a polygon’s color
« or other surface property

* specified by programmer or artist giTexcoord2f (s, t)
T i glVertexf (x,y,z,w)

37

Texture Mapping Example

38

(1 1)
H (1, 0)

Example Texture Map

Texture

X
¥
-, glTexCoord2d(1,1); I{ 2

glVertex3d (0, 2, 2);

/ \ N

ngeXCoord2d(O O)

~ glVertex3d (0, -2, -2);

Object Mapped Texture

39

(0,1)

(0,0)

Fractional Texture Coordinates

texture
image

(1,1)

(1,0) (0,0) (-25,0)

40

Texture Lookup: Tiling and Clamping

« what if s or t is outside the interval [0...1]7?

* multiple choices

* use fractional part of texture coordinates

» cyclic repetition of texture to tile whole surface

glTexParameteri(..., GL_ TEXTURE WRAP S, GL REPEAT,
GL TEXTURE WRAP T, GL REPEAT, ...)

 clamp every component to range [0...1]

* re-use color values from texture image border

glTexParameteri(..., GL_ TEXTURE WRAP_ S, GL CLAMP,
GL TEXTURE WRAP T, GL CLAMP, ...)

41

Tiled Textur_e_I_VIap

glTexCoord2d(1, 1);

olVertex3d (x, v, 2); .= \

Texture \\ (0,0) O m,,l) Mapped Texture

(4,0)

glTexCoord2d(4, 4); +
glVertex3d (X, v, z); A

Tex (0,0) (0,4) Mapped Texture

Demo

 Nate Robbins tutors
e texture

43

Texture Coordinate Transformation

* motivation
* change scale, orientation of texture on an object
* approach
* texture matrix stack
* transforms specified (or generated) tex coords
glMatrixMode (GL TEXTURE) ;
glLoadIdentity() ;
glRotate() ;

« more flexible than changing (s,t) coordinates
* [demo]

44

Texture Functions

* once have value from the texture map, can:

- directly use as surface color: GL_ REPLACE
 throw away old color, lose lighting effects

- modulate surface color: GL MODULATE
« multiply old color by new value, keep lighting info
* texturing happens after lighting, not relit

- use as surface color, modulate alpha: GL. DECAL
- like replace, but supports texture transparency

* blend surface color with another: GL BLEND

* new value controls which of 2 colors to use
* indirection, new value not used directly for coloring

 specify with g1TexEnvi (GL TEXTURE ENV,
GL TEXTURE ENV MODE, <mode>)

* [demo]

45

Texture Pipeline

(x, Y, z)
Object position
(-2.3, 7.1, 17.7)
(s, 1) (s’,)
Texel space Texel color
Parameter space — Transformed —— (81, 74) — (0.9,0.8,0.7)
(0.32, 0.29) parameter space ’ "0,

(0.52, 0.49)

Object color
(0.5,0.5,0.5)

» Final color

(0.45,0.4,0.35)

46

Texture Objects and Binding

» texture object

- an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

+ provides efficiency gains over having to repeatedly load and reload a
texture

* you can prioritize textures to keep in memory

« OpenGL uses least recently used (LRU) if no priority is assigned
* texture binding

* which texture to use right now

« switch between preloaded textures

47

Basic OpenGL Texturing

create a texture object and fill it with texture data:
- glGenTextures (num, &indices) to get identifiers for the objects
- glBindTexture (GL TEXTURE 2D, identifier) to bind
- following texture commands refer to the bound texture

* glTexParameteri (GL TEXTURE 2D, .., ..) tospecify
parameters for use when applying the texture
* glTexImage2D (GL TEXTURE 2D, ...) to specify the texture data

(the image itself)
enable texturing: glEnable (GL TEXTURE 2D)
state how the texture will be used:
e glTexEnvft (..)
specify texture coordinates for the polygon:

* use glTexCoord2f (s, t) before each vertex:
e glTexCoord2f (0,0),; glVertex3f(x,v,2z);

48

Low-Level Details

* large range of functions for controlling layout of texture data
- state how the data in your image is arranged

° e.0..glPixelStorei (GL UNPACK ALIGNMENT, 1) tells
OpenGL not to skip bytes at the end of a row

* you must state how you want the texture to be put in memory:
how many bits per “pixel”, which channels,...

 textures must be square and size a power of 2
* common sizes are 32x32, 64x64, 256x256

- smaller uses less memory, and there is a finite amount of
texture memory on graphics cards

« ok to use texture template sample code for project 4
* http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

49

Texture Mapping

* texture coordinates

 specified at vertices
glTexCoord2f (s, t) ;
glVertexf (x,v,z);

* interpolated across triangle (like R,G,B,Z)
e ...well not quite!

50

Texture Mapping

* texture coordinate interpolation
* perspective foreshortening problem

51

Interpolation: Screen vs. World Space

* screen space interpolation incorrect

 problem ignored with shading, but artifacts
more visible with texturing |Po(xy,2) |

52

Texture Coordinate Interpolation

» perspective correct interpolation
o, B,y
* barycentric coordinates of a point P in a triangle
* S0, s1,s82:
* texture coordinates of vertices
« w0, wi,w2:

* homogeneous coordinates of vertices

(s1,t1)
(x1,y1,z1,w1)

(s2,t2)
(x2,y2,z2,w2) (s0,t0)
(x0,y0,z0,w0)

s, I wy+ s/ wi+y s, /w,

o/ wy,+p/w+y/w,

53

Reconstruction

Rotx Roty W (i |

[e 1] B)

(image courtesy of Kiriakos Kutulakos, U Rochester)

54

Reconstruction

* how to deal with:

* pixels that are much larger than texels?
- apply filtering, “averaging”

* pixels that are much smaller than texels ?
* Interpolate

55

MIPmapping

use “image pyramid” to precompute
averaged versions of the texture

128 %128 64x64 32x32 16x16 8x8 4x4 2x2

store whole pyramid in By
single block of memory

With MIP-mapping’

MIPmaps

multum in parvo -- many things in a small place

« prespecify a series of prefiltered texture maps of decreasing
resolutions

* requires more texture storage
+ avoid shimmering and flashing as objects move

e gluBuildZ2DMipmaps

« automatically constructs a family of textures from original
texture size down to 1x1

without

57

MIPmap storage

 only 1/3 more space required

58

Texture Parameters

* In addition to color can control other
material/object properties

» surface normal (bump mapping)
» reflected color (environment mapping)

59

Bump Mapping: Normals As Texture

* object surface often not smooth — to recreate correctly
need complex geometry model

 can control shape “effect” by locally perturbing surface
normal

* random perturbation
- directional change over region

Bump Mapping

tf P ‘ O(u)

Original surface

B(u)

W A bump map

Bump Mapping

0'(u)

Lengthening or shortening
O(u) using B(u)

N'(u)

The vectors to the

7=

‘new’ surface

Embossing

- at transitions
» rotate point’s surface normal by 6 or - 6

63

Displacement Mapping
* bump mapping gets \
silhouettes wrong PN

» shadows wrong too

* change surface
geometry instead
* only recently

available with
realtime graphics

* need to subdivide
surface

: , T

: " e o A

o L R AN O
LT ~ SR (%

FAX FPE S .} by b
B T PRI SR ARSI R S

64

