
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Hidden Surfaces III

Week 9, Wed Mar 17

2

Review: BSP Trees

• preprocess: create binary tree
• recursive spatial partition
• viewpoint independent

3

Review: BSP Trees
• runtime: correctly traversing this tree enumerates

objects from back to front
• viewpoint dependent: check which side of plane

viewpoint is on at each node
• draw far, draw object in question,

draw near

1

2

3

4 5

6

7
8

9

F N

FN

FN

N F

NF

1 2

34

5

6

78

9

FN

FN

FN

4

Review: The Z-Buffer Algorithm
• augment color framebuffer with Z-buffer or

depth buffer which stores Z value at each
pixel
• at frame beginning, initialize all pixel depths

to ∞
• when rasterizing, interpolate depth (Z)

across polygon
• check Z-buffer before storing pixel color in

framebuffer and storing depth in Z-buffer
• don’t write pixel if its Z value is more distant

than the Z value already stored there

5

More: Integer Depth Buffer
• reminder from picking discussion

• depth lies in the NDC z range [0,1]
• format: multiply by 2^n -1 then round to nearest int

• where n = number of bits in depth buffer
• 24 bit depth buffer = 2^24 = 16,777,216 possible

values
• small numbers near, large numbers far

• consider depth from VCS: (1<<N) * (a + b / z)
• N = number of bits of Z precision
• a = zFar / (zFar - zNear)
• b = zFar * zNear / (zNear - zFar)
• z = distance from the eye to the object

6

Review: Depth Test Precision

• reminder: perspective transformation maps
eye-space (view) z to NDC z

• thus:

7

Review: Depth Test Precision

• therefore, depth-buffer essentially stores 1/z,
rather than z!

• issue with integer depth buffers
• high precision for near objects
• low precision for far objects

-z-zeyeeye

zzNDCNDC

-n-n -f-f

8

Review: Depth Test Precision
• low precision can lead to depth fighting for far objects

• two different depths in eye space get mapped to same
depth in framebuffer

• which object “wins” depends on drawing order and scan-
conversion

• gets worse for larger ratios f:n
• rule of thumb: f:n < 1000 for 24 bit depth buffer

• with 16 bits cannot discern millimeter differences in
objects at 1 km distance

• demo:
sjbaker.org/steve/omniv/love_your_z_buffer.html

9

Correction: Ortho Camera Projection
• camera’s back plane

parallel to lens
• infinite focal length
• no perspective

convergence
• just throw away z values
• x and y coordinates do

not change with respect
to z in this projection

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

0

y

x

z

y

x

p

p

p

!
!
!
!

"

#

$
$
$
$

%

&

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

P

nearfar

nearfar

nearfar

bottop

bottop

bottop

leftright

leftright

leftright

P

!
!
!
!
!
!
!
!
!
!

"

#

$
$
$
$
$
$
$
$
$
$

%

&

'

+
'

'

'

'

+
'

'

'

+
'

'

=

1000

2
00

0
2

0

00
2

'

week4.day2, slide 18

10

 Z-Buffer Algorithm Questions

• how much memory does the Z-buffer use?
• does the image rendered depend on the

drawing order?
• does the time to render the image depend on

the drawing order?
• how does Z-buffer load scale with visible

polygons? with framebuffer resolution?

11

Z-Buffer Pros

• simple!!!
• easy to implement in hardware

• hardware support in all graphics cards today
• polygons can be processed in arbitrary order
• easily handles polygon interpenetration
• enables deferred shading

• rasterize shading parameters (e.g., surface
normal) and only shade final visible fragments

12

Z-Buffer Cons
• poor for scenes with high depth complexity

• need to render all polygons, even if
most are invisible

• shared edges are handled inconsistently
• ordering dependent

eyeeye

13

Z-Buffer Cons
• requires lots of memory

• (e.g. 1280x1024x32 bits)
• requires fast memory

• Read-Modify-Write in inner loop
• hard to simulate translucent polygons

• we throw away color of polygons behind
closest one

• works if polygons ordered back-to-front
• extra work throws away much of the speed

advantage

14

Hidden Surface Removal

• two kinds of visibility algorithms
• object space methods
• image space methods

15

Object Space Algorithms
• determine visibility on object or polygon level

• using camera coordinates
• resolution independent

• explicitly compute visible portions of polygons
• early in pipeline

• after clipping
• requires depth-sorting

• painter’s algorithm
• BSP trees

16

Image Space Algorithms

• perform visibility test for in screen coordinates
• limited to resolution of display
• Z-buffer: check every pixel independently

• performed late in rendering pipeline

17

Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef((thth,x,y,z),x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

18

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

OCSOCS
object

WCSWCS
world

VCSVCS
viewing

CCSCCS
clipping

NDCSNDCS

normalized
device

SCSSCS
screen

(2D)DCSDCS
device

(3D)

(4D)

/w/w

19

Backface Culling

20

Back-Face Culling

• on the surface of a closed orientable
manifold, polygons whose normals point
away from the camera are always
occluded:

note: backface culling
alone doesn’t solve the

hidden-surface problem!

21

Back-Face Culling

• not rendering backfacing polygons improves
performance
• by how much?

• reduces by about half the number of polygons
to be considered for each pixel

• optimization when appropriate

22

Back-Face Culling
• most objects in scene are typically “solid”
• rigorously: orientable closed manifolds

• orientable: must have two distinct sides
• cannot self-intersect
• a sphere is orientable since has

two sides, 'inside' and 'outside'.
• a Mobius strip or a Klein bottle is

not orientable
• closed: cannot “walk” from one

side to the other
• sphere is closed manifold
• plane is not

23

Back-Face Culling

• examples of non-manifold objects:
• a single polygon
• a terrain or height field
• polyhedron w/ missing face
• anything with cracks or holes in boundary
• one-polygon thick lampshade

24

Back-face Culling: VCS

yy

zz

first idea:first idea:
cull if cull if 0<

Z
N

sometimessometimes
misses polygons thatmisses polygons that
should be culledshould be culledeyeeye

25

Back-face Culling: NDCS

yy

zz eyeeye

VCSVCS

NDCSNDCS

eyeeye works to cull ifworks to cull if 0>
Z
N

yy
zz

26

Invisible Primitives
• why might a polygon be invisible?

• polygon outside the field of view / frustum
• solved by clipping

• polygon is backfacing
• solved by backface culling

• polygon is occluded by object(s) nearer the viewpoint
• solved by hidden surface removal

27

28

Blending

29

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

30

Blending/Compositing
• how might you combine multiple elements?
• foreground color A, background color B

31

Premultiplying Colors
• specify opacity with alpha channel: (r,g,b,α)

• α=1: opaque, α=.5: translucent, α=0: transparent

• A over B
• C = αA + (1-α)B

• but what if B is also partially transparent?
• C = αA + (1-α) βB = βB + αA + βB - α βB
• γ = β + (1-β)α = β + α – αβ

• 3 multiplies, different equations for alpha vs. RGB

• premultiplying by alpha
• C’ = γ C, B’ = βB, A’ = αA

• C’ = B’ + A’ - αB’
• γ = β + α – αβ

• 1 multiply to find C, same equations for alpha and RGB

32

Texturing

33

Rendering Pipeline

Geometry
Database

Model/View
Transform. Lighting Perspective

Transform. Clipping

Scan
Conversion

Depth
TestTexturing Blending

Frame-
buffer

Geometry ProcessingGeometry Processing

RasterizationRasterization Fragment ProcessingFragment Processing

34

Texture Mapping
• real life objects have

nonuniform colors,
normals

• to generate realistic
objects, reproduce
coloring & normal
variations = texture

• can often replace
complex geometric
details

35

Texture Mapping
• introduced to increase realism

• lighting/shading models not enough
• hide geometric simplicity

• images convey illusion of geometry
• map a brick wall texture on a flat polygon
• create bumpy effect on surface

• associate 2D information with 3D surface
• point on surface corresponds to a point in

texture
• “paint” image onto polygon

36

Color Texture Mapping

• define color (RGB) for each point on object
surface

• two approaches
• surface texture map
• volumetric texture

37

Texture Coordinates
• texture image: 2D array of color values (texels)
• assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
• use interpolated (s,t) for texel lookup at each pixel
• use value to modify a polygon’s color

• or other surface property
• specified by programmer or artist glTexCoord2f(s,t)

glVertexf(x,y,z,w)

38

Texture Mapping Example

+ =

39

Example Texture Map

glTexCoord2d(0,0);
glVertex3d (0, -2, -2);

glTexCoord2d(1,1);
glVertex3d (0, 2, 2);

40

Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

41

Texture Lookup: Tiling and Clamping

• what if s or t is outside the interval [0…1]?
• multiple choices

• use fractional part of texture coordinates
• cyclic repetition of texture to tile whole surface

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_REPEAT,
GL_TEXTURE_WRAP_T, GL_REPEAT, ...)

• clamp every component to range [0…1]
• re-use color values from texture image border

glTexParameteri(…, GL_TEXTURE_WRAP_S, GL_CLAMP,
GL_TEXTURE_WRAP_T, GL_CLAMP, ...)

42

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)

43

Demo

• Nate Robbins tutors
• texture

44

Texture Coordinate Transformation
• motivation

• change scale, orientation of texture on an object
• approach

• texture matrix stack
• transforms specified (or generated) tex coords

glMatrixMode(GL_TEXTURE);
glLoadIdentity();
glRotate();
 …

• more flexible than changing (s,t) coordinates
• [demo]

45

Texture Functions
• once have value from the texture map, can:

• directly use as surface color: GL_REPLACE
• throw away old color, lose lighting effects

• modulate surface color: GL_MODULATE
• multiply old color by new value, keep lighting info
• texturing happens after lighting, not relit

• use as surface color, modulate alpha: GL_DECAL
• like replace, but supports texture transparency

• blend surface color with another: GL_BLEND
• new value controls which of 2 colors to use
• indirection, new value not used directly for coloring

• specify with glTexEnvi(GL_TEXTURE_ENV,
GL_TEXTURE_ENV_MODE, <mode>)

• [demo]

46

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

47

Texture Objects and Binding
• texture object

• an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

• provides efficiency gains over having to repeatedly load and reload a
texture

• you can prioritize textures to keep in memory
• OpenGL uses least recently used (LRU) if no priority is assigned

• texture binding
• which texture to use right now
• switch between preloaded textures

48

Basic OpenGL Texturing
• create a texture object and fill it with texture data:

• glGenTextures(num, &indices) to get identifiers for the objects
• glBindTexture(GL_TEXTURE_2D, identifier) to bind

• following texture commands refer to the bound texture
• glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
• glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
• enable texturing: glEnable(GL_TEXTURE_2D)
• state how the texture will be used:

• glTexEnvf(…)
• specify texture coordinates for the polygon:

• use glTexCoord2f(s,t) before each vertex:
• glTexCoord2f(0,0); glVertex3f(x,y,z);

49

Low-Level Details
• large range of functions for controlling layout of texture data

• state how the data in your image is arranged
• e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
• you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…
• textures must be square and size a power of 2

• common sizes are 32x32, 64x64, 256x256
• smaller uses less memory, and there is a finite amount of

texture memory on graphics cards
• ok to use texture template sample code for project 4

• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

50

Texture Mapping

• texture coordinates
• specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

• interpolated across triangle (like R,G,B,Z)
• …well not quite!

51

Texture Mapping

• texture coordinate interpolation
• perspective foreshortening problem

52

Interpolation: Screen vs. World Space

• screen space interpolation incorrect
• problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

53

Texture Coordinate Interpolation
• perspective correct interpolation

• α, β, γ :
• barycentric coordinates of a point P in a triangle

• s0, s1, s2 :
• texture coordinates of vertices

• w0, w1,w2 :
• homogeneous coordinates of vertices

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)
(s,t)?

54

Reconstruction

(image courtesy of (image courtesy of Kiriakos KutulakosKiriakos Kutulakos, U Rochester), U Rochester)

55

Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

56

MIPmapping

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid instore whole pyramid in
single block of memorysingle block of memory

57

MIPmaps
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of decreasing
resolutions

• requires more texture storage
• avoid shimmering and flashing as objects move

• gluBuild2DMipmaps

• automatically constructs a family of textures from original
texture size down to 1x1

without with

58

MIPmap storage

• only 1/3 more space required

59

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)
• reflected color (environment mapping)

60

Bump Mapping: Normals As Texture
• object surface often not smooth – to recreate correctly

need complex geometry model
• can control shape “effect” by locally perturbing surface

normal
• random perturbation
• directional change over region

61

Bump Mapping

62

Bump Mapping

63

Embossing

• at transitions
• rotate point’s surface normal by θ or - θ

64

Displacement Mapping
• bump mapping gets

silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

