
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Lighting/Shading IV,
Advanced Rendering I

Week 7, Fri Mar 5

2

News

• midterm is Monday, be on time!
• HW2 solutions out

3

Clarify: Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatefglRotatef(a,x,y,z)(a,x,y,z)
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

O2WO2W W2VW2V V2CV2C

N2DN2D

C2NC2N

coordinate system point of view!

4

Clarify: OpenGL Example

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45, 1.0, 0.1, 200.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
 glPushMatrix()
 glTranslate(4, 4, 0);
 glutSolidTeapot(1);
 glPopMatrix();
 glTranslate(2, 2, 0);
 glutSolidTeapot(1);OCS2OCS2

O2WO2W VCSVCS
modelingmodeling

transformationtransformation
viewingviewing

transformationtransformation
projectionprojection

transformationtransformation

object world viewing
W2VW2V V2CV2CWCSWCS

• transformations that
are applied to object
first are specified
last

OCS1OCS1

WCSWCS

VCSVCS

W2OW2O

W2OW2O

CCSCCS
clipping

CCSCCS

OCSOCS

coordinate system point of view!

V2WV2W

5

NDCSNDCS

object

world

viewing

OCSOCS

WCSWCS

VCSVCS
W2VW2V

O2WO2W

read down: transforming
between coordinate frames,

from frame A to frame B

V2NV2N

DCSDCS

normalized device

display

read up: transforming points,
up from frame B coords to

frame A coords

V2WV2W

W2OW2O

N2VN2V

D2ND2N N2DN2D

Coordinate Systems: Frame vs Point

6

Coordinate Systems: Frame vs Point

• is gluLookAt V2W or W2V? depends on
which way you read!
• coordinate frames: V2W

• takes you from view to world coordinate frame
• points/objects: W2V

• transforms point from world to view coords

7

Homework
• most of my lecture slides use coordinate frame

reading ("reading down")
• same with my post to discussion group: said to use

W2V, V2N, N2D
• homework questions asked you to compute for

object/point coords ("reading up")

• correct matrix for question 1 is gluLookat
• enough confusion that we will not deduct marks if

you used inverse of gluLookAt instead of gluLookAt!
• same for Q2, Q3: no deduction if you used inverses

of correct matices

8

Review: Reflection Equations

 Idiffuse = kd Ilight (n • l)
nl

θ

2 (N (N · L)) – L = R
!

Ispecular = ksIlight (v•r)
n
shiny

9

Review: Phong Lighting Model

• combine ambient, diffuse, specular components

• commonly called Phong lighting
• once per light
• once per color component

• reminder: normalize your vectors when calculating!
• normalize all vectors: n,l,r,v

!

I
total

= k
a
I
ambient

+ I
i
(

i=1

lights

" k
d
(n• l

i
) + k

s
(v•r

i
)
n
shiny
)

10

Review: Blinn-Phong Model

• variation with better physical interpretation
• Jim Blinn, 1977

• h: halfway vector
• h must also be explicitly normalized: h / |h|
• highlight occurs when h near n

ll

nn
vvhh

!

Iout (x) = k
s
(h•n)

n
shiny • Iin (x);with h = (l + v) /2

11

Review: Lighting

• lighting models
• ambient

• normals don’t matter
• Lambert/diffuse

• angle between surface normal and light
• Phong/specular

• surface normal, light, and viewpoint

12

Review: Shading Models Summary
• flat shading

• compute Phong lighting once for entire polygon
• Gouraud shading

• compute Phong lighting at the vertices
• at each pixel across polygon, interpolate lighting

values
• Phong shading

• compute averaged vertex normals at the vertices
• at each pixel across polygon, interpolate normals

and compute Phong lighting

13

Non-Photorealistic Shading
• cool-to-warm shading

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

k
w

=
1+ n " l

2
,c = k

w
c
w

+ (1# k
w
)c

c

14

Non-Photorealistic Shading
• draw silhouettes: if , e=edge-eye vector
• draw creases: if

!

(e "n0)(e "n1) # 0

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

!

(n
0
"n

1
) # threshold

15

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon

c

b

a

16

Computing Normals
• per-vertex normals by interpolating per-facet

normals
• OpenGL supports both

• computing normal for a polygon
• three points form two vectors

c

b

a

c-b
a-b

17

Computing Normals
• per-vertex normals by interpolating per-facet normals

• OpenGL supports both
• computing normal for a polygon

• three points form two vectors
• cross: normal of plane

gives direction
• normalize to unit length!

• which side is up?
• convention: points in

counterclockwise
order

c

b

a

c-b
a-b

(a-b) x (c-b)

18

Specifying Normals
• OpenGL state machine

• uses last normal specified
• if no normals specified, assumes all identical

• per-vertex normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glNormal3f(1,1,0);
glVertex3f(10,5,2);

• per-face normals
glNormal3f(1,1,1);
glVertex3f(3,4,5);
glVertex3f(10,5,2);

• normal interpreted as direction from vertex location
• can automatically normalize (computational cost)

glEnable(GL_NORMALIZE);

19

Advanced Rendering

20

Global Illumination Models
• simple lighting/shading methods simulate

local illumination models
• no object-object interaction

• global illumination models
• more realism, more computation
• leaving the pipeline for these two lectures!

• approaches
• ray tracing
• radiosity
• photon mapping
• subsurface scattering

21

Ray Tracing

• simple basic algorithm
• well-suited for software rendering
• flexible, easy to incorporate new effects

• Turner Whitted, 1990

22

Simple Ray Tracing

• view dependent method
• cast a ray from viewer’s

eye through each pixel
• compute intersection of

ray with first object in
scene

• cast ray from
intersection point on
object to light sources

projection
reference
point

pixel positions
on projection
plane

23

Reflection
• mirror effects

• perfect specular reflection

n

24

Refraction
• happens at interface

between transparent object
and surrounding medium
• e.g. glass/air boundary

• Snell’s Law
•
• light ray bends based on

refractive indices c1, c2

nd

t

25

Recursive Ray Tracing
• ray tracing can handle

• reflection (chrome/mirror)
• refraction (glass)
• shadows

• spawn secondary rays
• reflection, refraction

• if another object is hit,
recurse to find its color

• shadow
• cast ray from intersection

point to light source, check
if intersects another object

projection
reference
point

pixel positions
on projection
plane

26

Basic Algorithm

for every pixel pi {
generate ray r from camera position through pixel pi
for every object o in scene {

if (r intersects o)
 compute lighting at intersection point, using local

normal and material properties; store result in pi
else
 pi= background color

}
}

27

Basic Ray Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;

28

Algorithm Termination Criteria

• termination criteria
• no intersection
• reach maximal depth

• number of bounces
• contribution of secondary ray attenuated

below threshold
• each reflection/refraction attenuates ray

29

Ray Tracing Algorithm

Image Plane
Light
SourceEye

Refracted
Ray

Reflected
Ray

Shadow
Rays

30

Ray-Tracing Terminology

• terminology:
• primary ray: ray starting at camera
• shadow ray
• reflected/refracted ray
• ray tree: all rays directly or indirectly spawned

off by a single primary ray
• note:

• need to limit maximum depth of ray tree to
ensure termination of ray-tracing process!

31

Ray Trees

www.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting_web/lighting.pdf

• all rays directly or indirectly spawned off by a single
primary ray

32

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

33

Ray Generation

• camera coordinate system
• origin: C (camera position)
• viewing direction: v
• up vector: u
• x direction: x= v × u

• note:
• corresponds to viewing

transformation in rendering pipeline
• like gluLookAt

uu

vv

xxCC

34

Ray Generation
• other parameters:

• distance of camera from image plane: d
• image resolution (in pixels): w, h
• left, right, top, bottom boundaries

in image plane: l, r, t, b
• then:

• lower left corner of image:
• pixel at position i, j (i=0..w-1, j=0..h-1):

uxv !+!+!+= bldCO

yx

ux

!"!#!"!+=

!
#

#
!#!

#

#
!+=

yjxiO

h

bt
j

w

lr
iOP ji

11
,

uu

vv
xxCC

35

Ray Generation

• ray in 3D space:

where t= 0…∞

jijiji tCCPtCt ,,,)()(R v!+="!+=

36

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

37

• inner loop of ray-tracing
• must be extremely efficient

• task: given an object o, find ray parameter t, such that Ri,j(t)
is a point on the object

• such a value for t may not exist

• solve a set of equations
• intersection test depends on geometric primitive

• ray-sphere
• ray-triangle
• ray-polygon

Ray - Object Intersections

38

Ray Intersections: Spheres

• spheres at origin
• implicit function

• ray equation

2222:),,(rzyxzyxS =++

!
!
!

"

#

$
$
$

%

&

'+

'+

'+

=

!
!
!

"

#

$
$
$

%

&

'+

!
!
!

"

#

$
$
$

%

&

='+=

zz

yy

xx

z

y

x

z

y

x

jiji

vtc

vtc

vtc

v

v

v

t

c

c

c

tCt ,,)(R v

39

Ray Intersections: Spheres

• to determine intersection:
• insert ray Ri,j(t) into S(x,y,z):

• solve for t (find roots)
• simple quadratic equation

2222)()()(rvtcvtcvtc
zzyyxx

=!++!++!+

40

Ray Intersections: Other Primitives
• implicit functions

• spheres at arbitrary positions
• same thing

• conic sections (hyperboloids, ellipsoids, paraboloids, cones,
cylinders)

• same thing (all are quadratic functions!)
• polygons

• first intersect ray with plane
• linear implicit function

• then test whether point is inside or outside of polygon (2D test)
• for convex polygons

• suffices to test whether point in on the correct side of every
boundary edge

• similar to computation of outcodes in line clipping (upcoming)

41

Ray-Triangle Intersection
• method in book is elegant but a bit complex
• easier approach: triangle is just a polygon

• intersect ray with plane

• check if ray inside triangle

!

normal : n = (b" a) # (c " a)

ray : x = e +td

plane : (p" x) $n = 0% x =
p $n

n

p $n

n
= e +td% t = "

(e "p) $n

d $n

p is a or b or c

a

b

c

e

d

x

n

42

Ray-Triangle Intersection
• check if ray inside triangle

• check if point counterclockwise from each edge (to
its left)

• check if cross product points in same direction as
normal (i.e. if dot is positive)

• more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf!

(b" a) # (x " a) $n % 0

(c "b) # (x "b) $n % 0

(a " c) # (x " c) $n % 0
a

b

c

x

n

CCW

43

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

44

Geometric Transformations
• similar goal as in rendering pipeline:

• modeling scenes more convenient using different
coordinate systems for individual objects

• problem
• not all object representations are easy to transform

• problem is fixed in rendering pipeline by restriction to
polygons, which are affine invariant

• ray tracing has different solution
• ray itself is always affine invariant
• thus: transform ray into object coordinates!

45

Geometric Transformations
• ray transformation

• for intersection test, it is only important that ray is in
same coordinate system as object representation

• transform all rays into object coordinates
• transform camera point and ray direction by inverse of

model/view matrix
• shading has to be done in world coordinates (where

light sources are given)
• transform object space intersection point to world

coordinates
• thus have to keep both world and object-space ray

46

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

47

Local Lighting

• local surface information (normal…)
• for implicit surfaces F(x,y,z)=0: normal n(x,y,z)

can be easily computed at every intersection
point using the gradient

• example:

!
!
!

"

#

$
$
$

%

&

''

''

''

=

zzyxF

yzyxF

xzyxF

zyx

/),,(

/),,(

/),,(

),,(n

2222),,(rzyxzyxF !++=

!
!
!

"

#

$
$
$

%

&

=

z

y

x

zyx

2

2

2

),,(n needs to be normalized!needs to be normalized!

48

Local Lighting
• local surface information

• alternatively: can interpolate per-vertex
information for triangles/meshes as in
rendering pipeline
• now easy to use Phong shading!

• as discussed for rendering pipeline
• difference with rendering pipeline:

• interpolation cannot be done incrementally
• have to compute barycentric coordinates for

every intersection point (e.g plane equation for
triangles)

49

Global Shadows

• approach
• to test whether point is in shadow, send out

shadow rays to all light sources
• if ray hits another object, the point lies in

shadow

50

Global Reflections/Refractions
• approach

• send rays out in reflected and refracted direction to
gather incoming light

• that light is multiplied by local surface color and
added to result of local shading

51

Total Internal Reflection

http://www.physicsclassroom.com/Class/refrn/U14L3b.html

52

Ray Tracing

• issues:
• generation of rays
• intersection of rays with geometric primitives
• geometric transformations
• lighting and shading
• efficient data structures so we don’t have to

test intersection with every object

53

Optimized Ray-Tracing
• basic algorithm simple but very expensive
• optimize by reducing:

• number of rays traced
• number of ray-object intersection calculations

• methods
• bounding volumes: boxes, spheres
• spatial subdivision

• uniform
• BSP trees

• (more on this later with collision)

54

Example Images

55

Radiosity
• radiosity definition

• rate at which energy emitted or reflected by a surface
• radiosity methods

• capture diffuse-diffuse bouncing of light
• indirect effects difficult to handle with raytracing

56

Radiosity
• illumination as radiative heat transfer

• conserve light energy in a volume
• model light transport as packet flow until convergence
• solution captures diffuse-diffuse bouncing of light

• view-independent technique
• calculate solution for entire scene offline
• browse from any viewpoint in realtime

heat/light source

thermometer/eye

reflective objects

energy
packets

57

Radiosity

[IBM][IBM]

• divide surfaces into small patches
• loop: check for light exchange between all pairs

• form factor: orientation of one patch wrt other patch (n x n matrix)

escience.anu.edu.au/lecture/cg/GlobalIllumination/Image/continuous.jpgescience.anu.edu.au/lecture/cg/GlobalIllumination/Image/discrete.jpg

58

Better Global Illumination
• ray-tracing: great specular, approx. diffuse

• view dependent
• radiosity: great diffuse, specular ignored

• view independent, mostly-enclosed volumes
• photon mapping: superset of raytracing and radiosity

• view dependent, handles both diffuse and specular well
raytracing photon mapping

graphics.ucsd.edu/~henrik/images/cbox.html

59

Subsurface Scattering: Translucency

• light enters and leaves at different locations
on the surface
• bounces around inside

• technical Academy Award, 2003
• Jensen, Marschner, Hanrahan

60

Subsurface Scattering: Marble

61

Subsurface Scattering: Milk vs. Paint

62

Subsurface Scattering: Skin

63

Subsurface Scattering: Skin

64

Non-Photorealistic Rendering
• simulate look of hand-drawn sketches or

paintings, using digital models

www.red3d.com/cwr/npr/

