Tamara Munzner

Lighting/Shading IV,
Advanced Rendering I
Week 7, Fri Mar 5
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Coordinate Systems: Frame vs Point read down: transforming read up: transforming points,
between coordinate frames, between coordinate frames, \quad up from frame B coords to
from frame A to frame B

DCS display
D2N NDCS normalized device
N2V vCs viewing
was world
W2O OCS object

- midterm is Monday, be on time
- HW2 solutions out

Clarify: Projective Rendering Pipeline $<_{\text {object }}^{\text {glVertex } 3 f(x, y, z)}$ coordinate system point of view! object O 2 W world viewing

 $\underset{\text { gIR }}{\text { gitatef }(a, x, y, z, z)}$

.… - object coordinate system $\quad \underset{\text { perspective }}{\substack{\text { division }}}$ normalized WCS - world coordinate system glViewport($(, y, a, b)$, N2D device VCS - viewing coordinate system
CCS - clipping coordinate system viewport \downarrow, DCS - device coordinate system

Clarify: OpenGL Example object coordinate system point of view! $\begin{array}{lllll}\text { Objecs } & \text { O2W world } \\ \text { WCS } & \text { W2V viewing } \\ \text { VCS }\end{array}$ V2C clipping $\xrightarrow[\text { OCS }]{\text { transformation }}$ moding $\rightarrow \underset{\text { transformation }}{\substack{\text { viewing }}} \xrightarrow{\text { projection }}$ transformation

CCS ${ }_{\text {glMatrixMode (GL_PROJECTION })}$) glLoadidentity ();
gluperspective($45,1.0,0.1,200.0$)
gIMatrixMode(GI MoDEvTEW)
VCS glMatrixMode(GL_MODELVIEW) ; glLoadidentity () ;
g1Translatef ($0.0,0.0,-5.0) ;$ V2W,$~$
WCS ${ }^{\mathrm{g} 1}$
 CS1 glutSolidreapot(1) glutsolidreapot (1)
g1PopMatrix() ; glTranslate($2,2,0$); W2O CS2 glutSolidreapot (1); $\begin{aligned} & \text { las }\end{aligned}$

Coordinate Systems: Frame vs Point

- is gluLookAt V2W or W2V? depends on which way you read!
- coordinate frames: V2W
- takes you from view to world coordinate frame - points/objects: W2V
- transforms point from world to view coords

Review: Phong Lighting Model

- combine ambient, diffuse, specular components
$\left.\mathbf{I}_{\text {total }}=\mathbf{k}_{\mathbf{a}} \mathbf{I}_{\text {ambient }}+\sum_{i=1}^{\text {\#lights }} \mathbf{I}_{\mathbf{i}} \mathbf{k}_{\mathbf{d}}\left(\mathbf{n} \cdot \mathbf{l}_{\mathbf{i}}\right)+\mathbf{k}_{\mathbf{s}}\left(\mathbf{v} \cdot \mathbf{r}_{\mathbf{i}}\right)^{n_{\text {shiny }}}\right)$
- commonly called Phong lighting
- once per light
- once per color component
- reminder: normalize your vectors when calculating!
- normalize all vectors: n,l,r,v

Review: Blinn-Phong Model

- variation with better physical interpretation

$$
\stackrel{\cdot}{\dot{I}_{\text {out }}}\left(\mathbf{x i m} \text { Blinn, } 1977 \mathbf{k}_{\mathbf{s}}(\mathbf{h} \cdot \mathbf{n})^{n_{\text {shiny }}} \bullet I_{\text {in }}(\mathbf{x}) ; \text { with } \mathbf{h}=(\mathbf{l}+\mathbf{v}) / 2\right.
$$

- \boldsymbol{h} : halfway vector
- h must also be explicitly normalized: $\mathrm{h} /|\mathrm{h}|$
- highlight occurs when h near n

Homework

- most of my lecture slides use coordinate frame reading ("reading down")
same with my post to discussion group: said to use W2V, V2N, N2D
- homework questions asked you to compute for object/point coords ("reading up")
- correct matrix for question 1 is gluLookat
- enough confusion that we will not deduct marks if you used inverse of gluLookAt instead of gluLookAt! - same for Q2, Q3: no deduction if you used inverses of correct matices

Review: Reflection Equations

$$
\mathbf{I}_{\text {diffuse }}=\mathbf{k}_{\mathbf{d}} \mathbf{I}_{\text {light }}(\mathbf{n} \cdot \mathbf{l})
$$

\square
\qquad
$\mathbf{I}_{\text {specular }}=\mathbf{k}_{\mathbf{s}} \mathbf{I}_{\text {ighth }}(\mathbf{v} \cdot \mathbf{r})^{n_{\text {sliny }}}$

Review: Lighting

- lighting models
- ambient
- normals don't matter
- Lambert/diffuse
- angle between surface normal and light
- Phong/specular
- surface normal, light, and viewpoint

Review: Shading Models Summary

- flat shading

- compute Phong lighting once for entire polygon
- Gouraud shading
- compute Phong lighting at the vertices
- at each pixel across polygon, interpolate lighting values
- Phong shading
- compute averaged vertex normals at the vertices
at each pixel across polygon, interpolate normals and compute Phong lighting

Non-Photorealistic Shading - cool-to-warm shading $k_{w}=\frac{1+\mathbf{n} \cdot \mathbf{1}}{2}, c=k_{w} c_{w}+\left(1-k_{w}\right) c_{c}$

Non-Photorealistic Shading

- draw silhouettes: if $\left(\mathbf{e} \cdot \mathbf{n}_{0}\right)\left(\mathbf{e} \cdot \mathbf{n}_{1}\right) \leq 0, \mathbf{e}=$ edge-eye vector - draw creases: if $\left(\mathbf{n}_{0} \cdot \mathbf{n}_{1}\right) \leq$ threshold

Computing Normals

- per-vertex normals by interpolating per-face normals
- OpenGL supports both
- computing normal for a polygon

Computing Normals

- per-vertex normals by interpolating per-facet normals
- OpenGL supports both
- computing normal for a polygon - three points form two vectors

0

Computing Normals

per-vertex normals by interpolating per-facet normals
OpenGL supports both
computing normal for a polygon hree points form two vector
cross: normal of
gives direction
normalize to unit length!
which side is up? - convention: points in convention. points
order order

Specifying Normals

- OpenGL state machine
- uses last normal specified
- if no normals specified, assumes all identica
- per-vertex normals

gil ${ }^{\text {gimalisf(1,1,1) }}$
givertex $3(3,4,5):$

glinormalif(1,1,0);
glvertex $3 f(10,5,2) ;$

- per-face normals
giNormalif($(1,1,1)$;
giVenexe3f(3,4,5);
giVerexsf($10,5,2) ;$
- normal interpreted as direction from vertex location
- can automatically normalize (computational cost) glEnable(GL_NORMALIZE):

Global Illumination Models

- simple lighting/shading methods simulate local illumination models
- no object-object interaction
- global illumination models
- more realism, more computation
- leaving the pipeline for these two lectures!
- approaches
- ray tracing
- radiosity
- photon mapping
- subsurface scattering

Refraction

- view dependent method - cast a ray from viewer's eye through each pixel - compute intersection of ray with first object in scene
- cast ray from intersection point on object to light sources

Reflection

mirror effects

- perfect specular reflection

Recursive Ray Tracing
ray tracing can handle

- reflection (chrome/mirror)
- refraction (glass)
- shadows
spawn secondary rays - reflection, refraction - if another object is hit, recurse to find its color - shadow cast ray from intersection point to light source, check if intersects another object

Basic Algorithm

for every pixel $p_{i}\{$
generate ray r from camera position through pixel p_{i} for every object o in scene \{
if (r intersects 0)
compute lighting at intersection point, using local normal and material properties; store result in p_{i} else
$\mathrm{p}_{\mathrm{i}}=$ background color
\}
\}

Basic Ray Tracing Algorithm
RayTrace(r,scene)
obj := FirstlIntersection(r,scene)
if (no obj) return BackgroundColor;
if ($\operatorname{Reflect(obj)})$) then
reflect_color := RayTrace(ReflectRay(r,obj)); else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,obj));
else
return Shade(reflect_color,refract_color,obj) end;

Algorithm Termination Criteria

- termination criteria
- no intersection
- reach maximal depth
- number of bounces
- contribution of secondary ray attenuated
below threshold
- each reflection/refraction attenuates ray

Ray Tracing Algorithm

Ray-Tracing Terminology

- terminology:

- primary ray: ray starting at camera
- shadow ray
- reflected/refracted ray
- ray tree: all rays directly or indirectly spawned
off by a single primary ray
- note:
- need to limit maximum depth of ray tree to ensure termination of ray-tracing process!

Ray Trees

- all rays directly or indirectly spawned off by a single primary ray

Ray Tracing

- issues:

- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
- efficient data structures so we don't have to
test intersection with every object

Ray Generation

camera coordinate system

- origin: C (camera position)
- viewing direction: v
- up vector: u
\mathbf{x} direction: $\mathbf{x}=\mathbf{v} \times \mathbf{u}$
- note:

corresponds to viewing transformation in rendering pipeline
- like gluLookAt

Ray Generation

other parameters:

- distance of camera from image plane: d
- image resolution (in pixels): w, h
- left, right, top, bottom boundaries
in image plane: l, r, t, b
then:
- lower left corner of image: $O=C+d \cdot \mathbf{v}+l \cdot \mathbf{x}+b \cdot \mathbf{u}$
- pixel at position $i, j(i=0 . . w-l, j=0 . . h-l)$

$$
P_{i, j}=O+i \cdot \frac{r-l}{w-1} \cdot \mathbf{x}-j \cdot \frac{t-b}{h-1} \cdot \mathbf{u}
$$

$$
=O+i \cdot \Delta x \cdot \mathbf{x}-j \cdot \Delta y \cdot \mathbf{y}
$$

Ray Generation

ray in 3D space:

$$
\mathrm{R}_{i, j}(t)=C+t \cdot\left(P_{i, j}-C\right)=C+t \cdot \mathbf{v}_{i, j}
$$

where $t=0 \ldots \infty$

Ray Tracing

- issues:

- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
- efficient data structures so we don't have to test intersection with every object

Ray - Object Intersections

inner loop of ray-tracing
must be extremely efficient
task: given an object o, find ray parameter t, such that $\mathbf{R}_{i,(t)}$ a point on the object
such a value for t may not exist
solve a set of equations
intersection test depends on geometric primitive
ray-sphere
ray-polygon

Ray Intersections: Spheres

- spheres at origin
- implicit function

$$
S(x, y, z): x^{2}+y^{2}+z^{2}=r^{2}
$$

- ray equation
$\mathrm{R}_{i, j}(t)=C+t \cdot \mathbf{v}_{i, j}=\left(\begin{array}{l}c_{x} \\ c_{y} \\ c_{z}\end{array}\right)+t \cdot\left(\begin{array}{l}v_{x} \\ v_{y} \\ v_{z}\end{array}\right)=\left(\begin{array}{c}c_{x}+t \cdot v_{x} \\ c_{y}+t \cdot v_{y} \\ c_{z}+t \cdot v_{z}\end{array}\right)$

Ray Intersections: Spheres

- to determine intersection:
- insert ray $\mathbf{R}_{i, j}(t)$ into $S(x, y, z)$

$$
\left(c_{x}+t \cdot v_{x}\right)^{2}+\left(c_{y}+t \cdot v_{y}\right)^{2}+\left(c_{z}+t \cdot v_{z}\right)^{2}=r^{2}
$$

- solve for t (find roots)
- simple quadratic equation

Ray Intersections: Other Primitives
implicit functions

- spheres at arbitrary positions
- same thing
conic sections (hyperboloids, ellipsoids, paraboloids, cone
cylinders) cylinders)
ng (all are quadratic functions!)
- polygons
- first intersect ray with plane
- for convex polygons
for convex polygons
fires to boundary edge
similar to computation of outcodes in line clipping (upcoming)
${ }_{39}$

Ray-Triangle Intersection

- method in book is elegant but a bit complex - easier approach: triangle is just a polygon - intersect ray with plane
normal: $\mathbf{n}=(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})$
$\mathrm{plane}:(\mathbf{p}-\mathbf{x}) \cdot \mathbf{n}=0 \Rightarrow \mathbf{x}=\frac{\mathbf{p} \cdot \mathbf{n}}{\mathbf{n}}$
$\frac{\mathbf{p} \cdot \mathbf{n}}{\mathbf{n}}=\mathbf{e}+t \mathbf{d} \Rightarrow t=-\frac{(\mathbf{e}-\mathbf{p}) \cdot \mathbf{n}}{\mathbf{d} \cdot \mathbf{n}}$
- check if ray inside triangle

Ray-Triangle Intersection

- check if ray inside triangle
- check if point counterclockwise from each edge (to its left)
check if cross product points in same direction as normal (i.e. if dot is positive)

(b-a) $\times(\mathbf{x}-\mathbf{a}) \cdot \mathbf{n} \geq 0$
(c-b) $\times(\mathbf{x}-\mathbf{b}) \cdot \mathbf{n} \geq 0$
(a-c) $\times(\mathbf{x}-\mathbf{c}) \cdot \mathbf{n} \geq 0$
- more details at
http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf ${ }_{42}$

Ray Tracing

issues:

- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
efficient data structures so we don't have to test intersection with every object

Geometric Transformations

- similar goal as in rendering pipeline
- modeling scenes more convenient using different coordinate systems for individual objects
- problem
- not all object representations are easy to transform - problem is fixed in rendering pipeline by restriction to polygons, which are affine invarian
- ray tracing has different solution
ray itself is always affine invarian
thus: transform ray into object coordinates.

Geometric Transformations

ray transformation

- for intersection test, it is only important that ray is in same coordinate system as object representation
transform all rays into object coordinates
- transform camera point and ray direction by inverse of model/view matrix
shading has to be done in world coordinates (where light sources are given)
- transform object space intersection point to world coordinates
- thus have to keep both world and object-space ray

Ray Tracing

- issues:

- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
- efficient data structures so we don't have to test intersection with every object

Local Lighting

- local surface information (normal...)
- for implicit surfaces $F(x, y, z)=0$: normal $\mathbf{n}(x, y, z)$ can be easily computed at every intersection point using the gradient

$$
\mathbf{n}(x, y, z)=\left(\begin{array}{l}
\partial F(x, y, z) / \partial x \\
\partial F(x, y, z) / \partial y \\
\partial F(x, y, z) / \partial z
\end{array}\right)
$$

- example: $\begin{gathered}F(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2} \\ 2 x\end{gathered}$

$$
\mathbf{n}(x, y, z)=\left(\begin{array}{l}
2 x \\
2 y \\
2 z
\end{array}\right)
$$

needs to be normalized!

Local Lighting

- local surface information
- alternatively: can interpolate per-vertex information for triangles/meshes as in rendering pipeline
- now easy to use Phong shading! as discussed for rendering pipeline
- difference with rendering pipeline:
- interpolation cannot be done incrementally
have to compute barycentric coordinates for every intersection point (e.g plane equation for triangles)
- to test whether point is in shadow, send out shadow rays to all light sources
- if ray hits another object, the point lies in shadow

approach
- send rays out in reflected and refracted direction to gather incoming light
that light is multiplied by local surface color and added to result of local shading

Total Internal Reflection

 As the angle of incidence increases from 0 to greater angles ...
...the refracted ray becomes dimmer (there is less refraction)the reflected ray becomes brighter (there is more reflection) ...the angle of refraction approaches 90 degrees until finally a refracted ray can no longer be seen.

Ray Tracing

- issues:
- generation of rays
- intersection of rays with geometric primitives
- geometric transformations
- lighting and shading
- efficient data structures so we don't have to test intersection with every object

Optimized Ray-Tracing
basic algorithm simple but very expensive
optimize by reducing:
number of rays traced
number of ray-object intersection calculations
methods
bounding volumes: boxes, spheres
spatial subdivision
uniform
(more on this later with collision)

Example Images

Radiosity

radiosity definition

- rate at which energy emitted or reflected by a surface
radiosity methods
capture diffuse-diffuse bouncing of light - indirect effects difficult to handle with raytracing

Radiosity

- illumination as radiative heat transfer

- conserve light energy in a volume
- model light transport as packet flow until convergence
- solution captures diffuse-diffuse bouncing of light
- view-independent technique
- calculate solution for entire scene offline
- browse from any viewpoint in realtime

Radiosity

divide surfaces into small patches
loop: check for light exchange between all pairs

Better Global Illumination

- ray-tracing: great specular, approx. diffuse - view dependent
radiosity: great diffuse, specular ignored
- view independent, mostly-enclosed volumes
- photon mapping: superset of raytracing and radiosity - view dependent, handles both diffuse and specular well

Subsurface Scattering: Translucency

- light enters and leaves at different locations on the surface
- bounces around inside
- technical Academy Award, 2003
- Jensen, Marschner, Hanrahan

Subsurface Scattering: Marble

Non-Photorealistic Rendering

- simulate look of hand-drawn sketches or paintings, using digital models

