

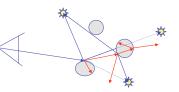
http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html 13

http://www.cs.utah.edu/~gooch/SIG98/paper/drawing.html

16

15

w.cs.virginia.edu/~gfx/Courses/2003/Intro.fall.03/slides/lighting_web/lighting.pdf


<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header></section-header>	EXAMPLE 1 EXAMPLE 1 EXA	Example 2 For the equation of the equation	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	Ray Intersections: Spheres • spheres at origin • implicit function $S(x, y, z) : x^{2} + y^{2} + z^{2} = r^{2}$ • ray equation $R_{i,j}(t) = C + t \cdot \mathbf{v}_{i,j} = \begin{pmatrix} c_{x} \\ c_{y} \\ c_{z} \end{pmatrix} + t \cdot \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix} = \begin{pmatrix} c_{x} + t \cdot v_{x} \\ c_{y} + t \cdot v_{y} \\ c_{z} + t \cdot v_{z} \end{pmatrix}$ ₃₈	Ray Intersections: Spheres • to determine intersection: • insert ray $\mathbf{R}_{i,j}(t)$ into $S(x,y,z)$: $(c_x + t \cdot v_x)^2 + (c_y + t \cdot v_y)^2 + (c_z + t \cdot v_z)^2 = r^2$ • solve for t (find roots) • simple quadratic equation	 Ray Intersections: Other Primitives implicit functions sheres at arbitrary positions same thing cnic sections (hyperboloids, ellipsoids, paraboloids, cones, cylinders) same thing (all are quadratic functions!) inguing (all are quadratic functions!) first intersect ray with plane linear implicit function then test whether point is inside or outside of polygon (2D test) for convex polygons suffices to test whether point in on the correct side of every boundary edge similar to computation of outcodes in line clipping (upcoming)
Ray-Triangle Intersection• method in book is elegant but a bit complex• easier approach: triangle is just a polygon• intersect ray with plane• intersect ray with plane• $normal: n = (b - a) \times (c - a)$ ray: $x = e + td$ plane: $(p - x) \cdot n = 0 \Rightarrow x = \frac{p \cdot n}{n}$ $\frac{p \cdot n}{n} = e + td \Rightarrow t = -\frac{(e - p) \cdot n}{d \cdot n}$ p is a or b or c• check if ray inside triangle	Ray-Triangle Intersection• check if ray inside triangle• check if point counterclockwise from each edge (to its left)• check if cross product points in same direction as normal (i.e. if dot is positive)• the colspan="2">(b - a) × (x - a) · n ≥ 0 (c - b) × (x - b) · n ≥ 0 (a - c) × (x - c) · n ≥ 0• more details at http://www.cs.cornell.edu/courses/cs465/2003fa/homeworks/raytri.pdf	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	 Certain Constitution Certain Constitution Constitution Cons
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>	 Ray Tracing ssues: generation of rays intersection of rays with geometric primitives geometric transformations ighting and shading efficient data structures so we don't have to test intersection with every object 	Local Lighting • local surface information (normal) • for implicit surfaces $F(x,y,z)=0$: normal $\mathbf{n}(x,y,z)$ can be easily computed at every intersection point using the gradient $\mathbf{n}(x,y,z) = \begin{pmatrix} \partial F(x,y,z)/\partial x \\ \partial F(x,y,z)/\partial y \\ \partial F(x,y,z)/\partial z \end{pmatrix}$ • example: $\frac{F(x,y,z) = x^2 + y^2 + z^2 - r^2}{\mathbf{n}(x,y,z) = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}}$ needs to be normalized!	Local Lighting

Global Shadows

- approach
- · to test whether point is in shadow, send out shadow rays to all light sources
- if ray hits another object, the point lies in shadow

Global Reflections/Refractions

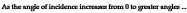
- approach
 - · send rays out in reflected and refracted direction to gather incoming light
 - · that light is multiplied by local surface color and added to result of local shading

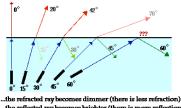
Example Images

Better Global Illumination

· ray-tracing: great specular, approx. diffuse

· radiosity: great diffuse, specular ignored


· view independent, mostly-enclosed volumes


photon mapping: superset of raytracing and radiosity view dependent, handles both diffuse and specular well

view dependent

raytracing

Total Internal Reflection

... the reflected ray becomes brighter (there is more reflection) ...the angle of refraction approaches 90 degrees until finally a refracted ray can no longer be seen. http://www.physicsclassroom.com/Class/refrn/U14L3b.html

Radiosity

- radiosity definition · rate at which energy emitted or reflected by a surface radiosity methods
- · capture diffuse-diffuse bouncing of light · indirect effects difficult to handle with raytracing

Subsurface Scattering: Translucency

- · light enters and leaves at different locations on the surface
- · bounces around inside
- technical Academy Award, 2003
 - Jensen, Marschner, Hanrahan

Subsurface Scattering: Skin

Ray Tracing

issues:

51

- · generation of rays
- · intersection of rays with geometric primitives geometric transformations
- lighting and shading
- efficient data structures so we don't have to test intersection with every object

Radiosity

52

56

illumination as radiative heat transfer

- · conserve light energy in a volume
- · model light transport as packet flow until convergence
- solution captures diffuse-diffuse bouncing of light

view-independent technique

- · calculate solution for entire scene offline
- · browse from any viewpoint in realtime

Subsurface Scattering: Marble

Non-Photorealistic Rendering

• simulate look of hand-drawn sketches or paintings, using digital models

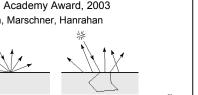
Optimized Ray-Tracing

- · basic algorithm simple but very expensive
- · optimize by reducing:
- · number of rays traced
- · number of ray-object intersection calculations
- methods
- · bounding volumes: boxes, spheres
- spatial subdivision
 - uniform BSP trees
- · (more on this later with collision)

Radiosity

- · divide surfaces into small patches
- · loop: check for light exchange between all pairs

Subsurface Scattering: Milk vs. Paint



graphics.ucsd.edu/~henrik/images/cbox.html

photon mapping

Subsurface Scattering: Skin

