- TA office hours in lab for P2/H2 questions next week
- Mon 3-5 (Shailen)
- Tue 3:30-5 (Kai)
- Wed 3-5 (Shailen)
- Thu 3-5 (Kai)
- Fri 2-4 (Garrett)
- again - start now, do not put off until late in break!

Review: Component Color

Tamara Munzner

Vision/Color
Week 5, Fri Feb 5
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010
.

- physics
- illumination electromagnetic spectra
- reflection
- material properties
- material properties - surface geometry and microgeometry
- perception
- physiology and neurophysiology
- perceptual psychology

Light Sources

- common light sources differ in kind of spectrum they emit:
- continuous spectrum
- energy is emitted at all wavelengths
blackbody radiation
tungsten light bulbs
tungsten light bulbs
- certain fluore
- electrical arc
- energy is emitted at certain discrete frequencies

Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

White Light

- sun or light bulbs emit all frequencies within visible range to produce what we perceive as "white light"

Line Spectrum

White Light and Color

- when white light is incident upon an object, some frequencies are reflected and some are absorbed by the object
- combination of frequencies present in the reflected light that determines what we perceive as the color of the object
- component-wise multiplication of colors - (a0, a1, a2 $)^{*}(b 0, b 1, b 2)=\left(a 0^{*} b 0, a 1 * b 1, a 2^{*} b 2\right)$

- must dive into light, human vision, color spaces

Electromagnetic Spectrum

- black body
- dark material, so that reflection can be neglected
- spectrum of emitted light changes with temperature
- this is the origin of the term "color temperature - e.g. when setting a white point for your monitor - cold: mostly infrared
- hot: reddish
- very hot: bluish
- demo:

$\xrightarrow[\square 1, ~ 1]{1}$

Sunlight Spectrum

- spectral distribution: power vs. wavelength

Continuous

 Spectrum- sunlight
- various "daylight" lamps

AM radio microwave ultraviolet gamma rays
FM radio, TV infrared x-rays

Perceptual vs. Colorimetric Terms

- Perceptual - Colorimetric
intensity : physical term
measured radiant energy emitted per unit of time, per unit solid angle, and per unit projected area of the source (related to the uminance of the source)
lightness/brightness: perceived intensity of light inear

- Hue	- Dominant wavelength
- Saturation	- Excitation purity
- Lightness	
- reflecting objects	- Luminance
- Brightness	
- light sources	- Luminance

Foveal Vision
hold out your thumb at arm's length

Tristimulus Theory of Color Vision

- Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 primaries

Colors that look the same but have differen spectra are called metamers

Physiology of Vision

- the retina

Physiology of Vision

- Center of retina is densely packed region called the fovea.
- Cones much denser here than the periphery

Trichromacy

- three types of cones

L or R, most sensitive to red light (610 nm) M or G, most sensitive to green light (560 nm)
S or B, most sensitive to blue light (430 nm)

Metamers

sensation of color derives from the stimulus of all three cone types

Color Spaces

three types of cones suggests define 3D color space?

$\mathrm{R}, \mathrm{G}, \mathrm{B}$

 define 3D color space?- idea: perceptually based measuremen - shine given wavelength (λ) on a screen - user must control three pure lights producing three other wavelengths - used $R=700 \mathrm{~nm}, G=546 \mathrm{~nm}$, and $B=436 \mathrm{~nm}$
- adjust intensity of RGB until colors are identical - this works because of metamers! - experiments performed in 1930s

Negative Lobes

sometimes need to point red dight to shine on targe in order to match colors

- equivalent mathematically to "removing red"
but physically impossible to remove red from CRT phosphors can't generate all other wavelenths with any set of three positive monochromatic lights!
solution: convert to new synthetic coordinate system to make the job easy

CIE Color Space

- CIE defined 3 "imaginary" lights X, Y, Z
- any wavelength λ can be matched perceptually by positive combinations

CIE "Horseshoe" Diagram Facts
can choose a point C for a white point

- corresponds to an illuminant
usually on curve swept out by black body radiation spectra for different temperatures

Measured vs. CIE Color Spaces

- measured basis
monochromatic lights
physical observations
negative lobes
transfor
. "imaginary" lights "imaginary" lights
all positive, unit are all positive, unit area
Y is luminance, no hue X,Z no luminance

CIE and Chromaticity Diagram

X, Y, Z form 3D shape

project X, Y, Z on $X+Y+Z=1$ plane for 2D color space - chromaticity diagram - separate color from brightness
. $\mathrm{X}=\mathrm{X} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$

- $y=Y /(X+Y+Z)$

CIE "Horseshoe" Diagram Facts

- all visible colors lie inside the horseshoe - result from color matching experiments
- spectral (monochromatic) colors lie around the border
- straight line between blue and red contains purple tones
colors combine linearly (i.e. along lines), since the $x y$-plane is a plane from a linear space
corresponds to an illuminant
usually on curve swept out by black body radiation spectra for different temperatures
two colors are complementary relative to C when are cated on opposite sides of line segment through C . so C is an affine combination of the two colors
find dominant wavelength of a color:
extend line from C through color to edge of diagram
some colors (i.e. purples) do not have a dominant wavelength,
but their complementary color does

Color Interpolation, Dominant \& Opponent Wavelength

Device Color Gamuts

 - gamut is polygon, device primaries at corners - defines reproducible color range- X, Y, and Z are hypothetical light sources, no device can produce entire gamut

Projector Gamuts

RGB Color Space (Color Cube)

- how to handle colors outside gamut?
- one way: construct ray to white point, find closest displayable point within gamut

Gamut Mapping

define colors with (r, g, b) amounts of red, green, and blue used by OpenGL hardware-centric

RGB color cube sits within CIE color space
subset of perceivable colors scale, rotate, shear cube

${ }^{4}$

HSV Color Space
more intuitive color space for people

- $\mathrm{H}=\mathrm{Hue}$
- $\mathrm{H}=\mathrm{He}$
- dominant
- $s=$ Saturation
\cdot how far from grey/white
- $=$ Vow far from black/white
also: brightness B, intensity 1 , lightness L

Opponent Color

- color model used for color TV - Y is luminance (same as CIE)
- I \& Q are color (not same I as HSI!)
- conversion from RGB is linear
- expressible with matrix multiply

$$
\left[\begin{array}{l}
Y \\
I \\
Q
\end{array}\right]=\left[\begin{array}{ccc}
0.30 & 0.59 & 0.11 \\
0.60 & -0.28 & -0.32 \\
0.21 & -0.52 & 0.31
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

- green is much lighter than red, and red lighter than blue

Luminance vs. Intensity

- luminance
- Y of YIQ
- $0.299 \mathrm{R}+0.587 \mathrm{G}+0.114 \mathrm{~B}$
- captures important factor - intensity/brightness - I/V/B of HSI/HSV/HSB - $0.333 \mathrm{R}+0.333 \mathrm{G}+0.333 \mathrm{~B}$ - not perceptually based

Display Gamuts

HSI/HSV and RGB

- H =hue same in both
$V=$ value is max, $l=$ intensity is average
$H=\cos ^{-1}\left[\frac{\frac{1}{2}[(R-G)+(R-B)]}{\sqrt{(R-G)^{2}+(R-B)(G-B)}}\right] \begin{aligned} & \text { if }(\mathrm{B}>\mathrm{G}), \\ & H=360-H\end{aligned}$
HSI: $\quad S=1-\frac{\min (R, G, B)}{I} \quad I=\frac{R+G+B}{3}$
HSV: $S=1-\frac{\min (R, G, B)}{V} \quad V=\max (R, G, B)$
vischeck.com
- simulates color vision deficiencies

Color/Lightness Constancy

- color perception depends on surrounding - colors in close proximity

- simultaneous contrast effect

- illumination under which the scene is viewed

Color/Lightness Constancy

Color/Lightness Constancy

