
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Viewing/Projection V, Vision/Color

Week 5, Mon Feb 1

2

Department of Computer Science
Undergraduate Events

Events this week
Resume Editing Drop-In Session
Date: Mon., Feb 1
Time: 11 am – 2 pm
Location: Rm 255, ICICS/CS
EADS Info Session
Date: Mon., Feb 1
Time: 3:30 – 5:30 pm
Location: CEME 1202
Job Interview Practice Session

(for non-coop students)
Date: Tues., Feb 2
Time: 11 am – 1 pm
Location: Rm 206, ICICS/CS

RIM Info Session
Date: Thurs., Feb 4
Time: 5:30 – 7 pm
Location: DMP 110
Events next week
Finding a Summer Job or

Internship Info Session
Date: Wed., Feb 10
Time: 12 pm
Location: X836
Masters of Digital Media

Program Info Session
Date: Thurs., Feb 11
Time: 12:30 – 1:30 pm
Location: DMP 201 3

Project 1 Grading News
• don’t forget to show up 5 min before your slot

• see news item on top of course page for signup
sheet scan

• if you have not signed up or need to change your
time, contact shailen AT cs.ubc.ca
• you will lose marks if we have to hunt you down!

4

Review: Perspective Warp/Predistortion
• perspective viewing frustum predistorted to cube
• orthographic rendering of warped objects in cube

produces same image as perspective rendering
of original frustum x

x

5

Review: Separate Warp and Homogenize

• warp requires only standard matrix multiply
• distort such that orthographic projection of distorted

objects shows desired perspective projection
• w is changed

• clip after warp, before divide
• division by w: homogenization

CCSCCS
NDCSNDCS

alter walter w / w/ w

VCSVCS
projectionprojection

transformationtransformation

viewing normalized
device

clipping

perspectiveperspective
divisiondivision

V2CV2C C2NC2N

6

x

z

NDCS

y

(-1,-1,-1)

(1,1,1)x=left

x=right

y=top

y=bottom z=-near z=-farx

VCS

y

z

Review: Perspective to NDCS Derivation

• shear
• scale
• projection-normalization

7

Review: N2D Transformation

xx
yy

viewportviewport
NDCNDC

0 500

300

0

-1
1

1

-1
height

width

xx

yy

NDCS DCS

8

Review: Projective Rendering Pipeline

OCS - object coordinate system

WCS - world coordinate system

VCS - viewing coordinate system

CCS - clipping coordinate system

NDCS - normalized device coordinate system

DCS - device coordinate system

OCSOCS WCSWCS VCSVCS

CCSCCS

NDCSNDCS

DCSDCS

modelingmodeling
transformationtransformation

viewingviewing
transformationtransformation

projectionprojection
transformationtransformation

viewportviewport
transformationtransformation

alter walter w

/ w/ w

object world viewing

device

normalized
device

clipping

perspectiveperspective
divisiondivision

glVertex3f(x,y,z)glVertex3f(x,y,z)

glTranslatefglTranslatef(x,y,z)(x,y,z)
glRotatef(a,x,y,zglRotatef(a,x,y,z))
........

gluLookAtgluLookAt(...)(...)

glFrustumglFrustum(...)(...)

glutInitWindowSizeglutInitWindowSize(w,h)(w,h)
glViewportglViewport(x,y,a,b)(x,y,a,b)

O2WO2W W2VW2V V2CV2C

N2DN2D

C2NC2N

9

Perspective Example

 view volume
• left = -1, right = 1
• bot = -1, top = 1
• near = 1, far = 4

!

2n

r " l
0

r + l

r " l
0

0
2n

t " b

t + b

t " b
0

0 0
"(f + n)

f " n

"2 fn

f " n
0 0 "1 0

$

%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(

!

1 0 0 0

0 1 0 0

0 0 "5 /3 "8 /3

0 0 "1 0

$

%
%
%
%

&

'

(
(
(
(

10

Perspective Example

tracks in VCS:
 left x=-1, y=-1
 right x=1, y=-1

view volume
 left = -1, right = 1
 bot = -1, top = 1
 near = 1, far = 4

z=-1

z=-4

x

z
VCS

top view

-1
-1 1

1

-1
NDCS

(z not shown)

real
midpoint

0 xmax-10
DCS

(z not shown)

ymax-1

x=-1 x=1

11

Perspective Example

/ w/ w

!

xNDCS = "1/zVCS

yNDCS =1/zVCS

zNDCS =
5

3
+

8

3zVCS

!

1

"1

"5z
VCS
/3" 8 /3

"z
VCS

$

%
%
%
%

&

'

(
(
(
(

=

1

1

"5 /3 "8 /3

"1

$

%
%
%
%

&

'

(
(
(
(

1

"1

z
VCS

1

$

%
%
%
%

&

'

(
(
(
(

12

OpenGL Example

 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45, 1.0, 0.1, 200.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glTranslatef(0.0, 0.0, -5.0);
 glPushMatrix()
 glTranslate(4, 4, 0);
 glutSolidTeapot(1);
 glPopMatrix();
 glTranslate(2, 2, 0);
 glutSolidTeapot(1);OCS2OCS2

O2WO2W VCSVCS
modelingmodeling

transformationtransformation
viewingviewing

transformationtransformation
projectionprojection

transformationtransformation

object world viewing
W2VW2V V2CV2CWCSWCS

• transformations that
are applied to object
first are specified
lastOCS1OCS1

WCSWCS

VCSVCS

W2OW2O

W2OW2O

CCSCCS
clipping

CCSCCS

OCSOCS

13

Viewing: More Camera Motion

14

Fly "Through The Lens": Roll/Pitch/Yaw

15

Viewing: Incremental Relative Motion
• how to move relative to current camera coordinate system?

• what you see in the window
• computation in coordinate system used to draw previous

frame is simple:
• incremental change I to current C
• at time k, want p' = IkIk-1Ik-2Ik-3 ... I5I4I3I2I1Cp

• each time we just want to premultiply by new matrix
• p’=ICp

• but we know that OpenGL only supports postmultiply by new
matrix

• p’=CIp

16

Viewing: Incremental Relative Motion
• sneaky trick: OpenGL modelview matrix has the info we

want!
• dump out modelview matrix with glGetDoublev()

• C = current camera coordinate matrix
• wipe the matrix stack with glIdentity()
• apply incremental update matrix I
• apply current camera coord matrix C

• must leave the modelview matrix unchanged by object
transformations after your display call
• use push/pop

• using OpenGL for storage and calculation
• querying pipeline is expensive

• but safe to do just once per frame

17

Caution: OpenGL Matrix Storage

• OpenGL internal matrix storage is
columnwise, not rowwise
a e i m
b f j n
c g k o
d h l p

• opposite of standard C/C++/Java convention
• possibly confusing if you look at the matrix

from glGetDoublev()!

18

Viewing: Virtual Trackball

• interface for spinning objects around
• drag mouse to control rotation of view volume

• orbit/spin metaphor
• vs. flying/driving

• rolling glass trackball
• center at screen origin, surrounds world
• hemisphere “sticks up” in z, out of screen
• rotate ball = spin world

19

Virtual Trackball

• know screen click: (x, 0, z)
• want to infer point on trackball: (x,y,z)

• ball is unit sphere, so ||x, y, z|| = 1.0
• solve for y

eye

image plane
20

Trackball Rotation
• correspondence:

• moving point on plane from (x, 0, z) to (a, 0, c)
• moving point on ball from p1 =(x, y, z) to p2 =(a, b, c)

• correspondence:
• translating mouse from p1 (mouse down) to p2 (mouse up)
• rotating about the axis n = p1 x p2

21

Trackball Computation
• user defines two points

• place where first clicked p1 = (x, y, z)
• place where released p2 = (a, b, c)

• create plane from vectors between points, origin
• axis of rotation is plane normal: cross product

• (p1 - o) x (p2 - o): p1 x p2 if origin = (0,0,0)
• amount of rotation depends on angle between

lines
• p1 • p2 = |p1| |p2| cos θ
• |p1 x p2 | = |p1| |p2| sin θ

• compute rotation matrix, use to rotate world
22

Picking

23

Reading

• Red Book
• Selection and Feedback Chapter

• all
• Now That You Know Chapter

• only Object Selection Using the Back Buffer

24

Interactive Object Selection
• move cursor over object, click

• how to decide what is below?
• inverse of rendering pipeline flow

• from pixel back up to object
• ambiguity

• many 3D world objects map to same 2D point
• four common approaches

• manual ray intersection
• bounding extents
• backbuffer color coding
• selection region with hit list

25

Manual Ray Intersection
• do all computation at application level

• map selection point to a ray
• intersect ray with all objects in scene.

• advantages
• no library dependence

• disadvantages
• difficult to program
• slow: work to do depends on total number and

complexity of objects in scene

x
VCS

y

26

Bounding Extents
• keep track of axis-aligned bounding

rectangles

• advantages
• conceptually simple
• easy to keep track of boxes in world space

27

Bounding Extents
• disadvantages

• low precision
• must keep track of object-rectangle relationship

• extensions
• do more sophisticated bound bookkeeping

• first level: box check.
• second level: object check

28

Backbuffer Color Coding

• use backbuffer for picking
• create image as computational entity
• never displayed to user

• redraw all objects in backbuffer
• turn off shading calculations
• set unique color for each pickable object

• store in table
• read back pixel at cursor location

• check against table

29

• advantages
• conceptually simple
• variable precision

• disadvantages
• introduce 2x redraw delay
• backbuffer readback very slow

Backbuffer Color Coding

30

for(int i = 0; i < 2; i++)
 for(int j = 0; j < 2; j++) {
 glPushMatrix();
 switch (i*2+j) {
 case 0: glColor3ub(255,0,0);break;
 case 1: glColor3ub(0,255,0);break;
 case 2: glColor3ub(0,0,255);break;
 case 3: glColor3ub(250,0,250);break;
 }
 glTranslatef(i*3.0,0,-j * 3.0)
 glCallList(snowman_display_list);
 glPopMatrix();
}

glColor3f(1.0, 1.0, 1.0);
for(int i = 0; i < 2; i++)

for(int j = 0; j < 2; j++) {
 glPushMatrix();
 glTranslatef(i*3.0,0,-j * 3.0);
 glColor3f(1.0, 1.0, 1.0);
 glCallList(snowman_display_list);
 glPopMatrix();

 }

Backbuffer Example

http://www.lighthouse3d.com/opengl/picking/
31

Select/Hit

• use small region around cursor for viewport
• assign per-object integer keys (names)
• redraw in special mode
• store hit list of objects in region
• examine hit list

• OpenGL support

32

Viewport

• small rectangle around cursor
• change coord sys so fills viewport

• why rectangle instead of point?
• people aren’t great at positioning mouse

• Fitts’ Law: time to acquire a target is
function of the distance to and size of the
target

• allow several pixels of slop

33

• nontrivial to compute
• invert viewport matrix, set up new orthogonal

projection
• simple utility command

• gluPickMatrix(x,y,w,h,viewport)
• x,y: cursor point
• w,h: sensitivity/slop (in pixels)

• push old setup first, so can pop it later

Viewport

34

Render Modes

• glRenderMode(mode)

• GL_RENDER: normal color buffer
• default

• GL_SELECT: selection mode for picking

• (GL_FEEDBACK: report objects drawn)

35

Name Stack

• again, "names" are just integers
 glInitNames()
• flat list
 glLoadName(name)
• or hierarchy supported by stack
 glPushName(name), glPopName

• can have multiple names per object

36

for(int i = 0; i < 2; i++) {
 glPushName(i);
 for(int j = 0; j < 2; j++) {
 glPushMatrix();
 glPushName(j);
 glTranslatef(i*10.0,0,j * 10.0);
 glPushName(HEAD);
 glCallList(snowManHeadDL);
 glLoadName(BODY);
 glCallList(snowManBodyDL);
 glPopName();
 glPopName();
 glPopMatrix();
 }
 glPopName();
}

Hierarchical Names Example

http://www.lighthouse3d.com/opengl/picking/

37

Hit List
• glSelectBuffer(buffersize, *buffer)

• where to store hit list data
• on hit, copy entire contents of name stack to output buffer.
• hit record

• number of names on stack
• minimum and minimum depth of object vertices

• depth lies in the NDC z range [0,1]
• format: multiplied by 2^32 -1 then rounded to nearest int

38

Integrated vs. Separate Pick Function

• integrate: use same function to draw and pick
• simpler to code
• name stack commands ignored in render mode

• separate: customize functions for each
• potentially more efficient
• can avoid drawing unpickable objects

39

Select/Hit
• advantages

• faster
• OpenGL support means hardware acceleration
• avoid shading overhead

• flexible precision
• size of region controllable

• flexible architecture
• custom code possible, e.g. guaranteed frame rate

• disadvantages
• more complex

40

Hybrid Picking

• select/hit approach: fast, coarse
• object-level granularity

• manual ray intersection: slow, precise
• exact intersection point

• hybrid: both speed and precision
• use select/hit to find object
• then intersect ray with that object

41

OpenGL Precision Picking Hints
• gluUnproject

• transform window coordinates to object coordinates
given current projection and modelview matrices

• use to create ray into scene from cursor location
• call gluUnProject twice with same (x,y) mouse

location
• z = near: (x,y,0)
• z = far: (x,y,1)
• subtract near result from far result to get direction

vector for ray
• use this ray for line/polygon intersection

42

Vision/Color

43

Reading for Color

• RB Chap Color

• FCG Sections 3.2-3.3
• FCG Chap 20 Color
• FCG Chap 21.2.2 Visual Perception (Color)

44

RGB Color

• triple (r, g, b) represents colors with amount
of red, green, and blue
• hardware-centric
• used by OpenGL

45

Alpha

• fourth component for transparency
• (r,g,b,α)

• fraction we can see through
• c = αcf + (1-α)cb

• more on compositing later

46

Additive vs. Subtractive Colors

• additive: light
• monitors, LCDs
• RGB model

• subtractive: pigment
• printers
• CMY model
• dyes absorb

light

!
!
!

"

#

$
$
$

%

&

'

!
!
!

"

#

$
$
$

%

&

=

!
!
!

"

#

$
$
$

%

&

B

G

R

Y

M

C

1

1

1

additive subtractive
47

Component Color
• component-wise multiplication of colors

• (a0,a1,a2) * (b0,b1,b2) = (a0*b0, a1*b1, a2*b2)

• why does this work?
• must dive into light, human vision, color spaces

48

Basics Of Color

• elements of color:

49

Basics of Color
• physics

• illumination
• electromagnetic spectra

• reflection
• material properties
• surface geometry and microgeometry

• polished versus matte versus brushed

• perception
• physiology and neurophysiology
• perceptual psychology

50

Light Sources
• common light sources differ in kind of spectrum

they emit:
• continuous spectrum

• energy is emitted at all wavelengths
• blackbody radiation
• tungsten light bulbs
• certain fluorescent lights
• sunlight
• electrical arcs

• line spectrum
• energy is emitted at certain discrete frequencies

51

Blackbody Radiation
• black body

• dark material, so that reflection can be neglected
• spectrum of emitted light changes with temperature

• this is the origin of the term “color temperature”
• e.g. when setting a white point for your monitor

• cold: mostly infrared
• hot: reddish
• very hot: bluish

• demo:

http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.html 52

Electromagnetic Spectrum

53

Electromagnetic Spectrum

54

White Light

• sun or light bulbs emit all frequencies within
visible range to produce what we perceive as
"white light"

55

Sunlight Spectrum

• spectral distribution: power vs. wavelength

56

Continuous
Spectrum

• sunlight
• various “daylight”

lamps

57

Line Spectrum

• ionized
gases

• lasers
• some

fluorescent
lamps

58

White Light and Color

• when white light is incident upon an object,
some frequencies are reflected and some are
absorbed by the object

• combination of frequencies present in the
reflected light that determines what we
perceive as the color of the object

59

Hue
• hue (or simply, "color") is dominant

wavelength/frequency

• integration of energy for all visible wavelengths is
proportional to intensity of color

60

Saturation or Purity of Light
• how washed out or how pure the color of the light

appears
• contribution of dominant light vs. other frequencies

producing white light
• saturation: how far is color from grey

• pink is less saturated than red
• sky blue is less saturated than royal blue

61

Intensity vs. Brightness

• intensity : physical term
• measured radiant energy emitted per unit of

time, per unit solid angle, and per unit
projected area of the source (related to the
luminance of the source)

• lightness/brightness: perceived intensity of
light
• nonlinear

62

Perceptual vs. Colorimetric Terms
• Perceptual

• Hue

• Saturation

• Lightness
• reflecting objects

• Brightness
• light sources

• Colorimetric

• Dominant wavelength

• Excitation purity

• Luminance

• Luminance

