University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010

Tamara Munzner

Nonspatial/Information Visualization II

Week 13, Wed Apr 14
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Assignments

- project
- P4 due today 5pm (plus grace/late days)
- project 4 demo signup sheet, for last time
- I will scan and post so you can check your time
- you must contact me by Fri to schedule if you weren't in class to sign up
- otherwise 2% huntdown penalty
- email me in advance if you need to change
- otherwise 2% noshow penalty
- homework
- H4 solutions released Friday
- homeworks not accepted after Thu 5pm
- again: if you hand in late, do include time/date at top
- H 4 will be graded before exam
- stay tuned, l'll announce on discussion group when they're ready to pick up

Office Hours

- extra TA office hours in lab 005 for P4/H4
- Wed 4/14 2-4, 5-7 (Shailen)
- Thu 4/15 3-5 (Kai)
- Fri 4/16 11-4 (Garrett)
- my office hours for rest of term
- Fri 4/16 4pm
- by appointment - send me email to book
- (I'm out of town 4/24-4/27, right after exam)

Graded Work

- still have some marked work not picked up, come grab it!
- homeworks, midterms
- some extra handouts in lab
- or print out yourself, everything posted on web site
- don't forget to check ugrad account for grading updates
- find out what you got
- also cross-check our records against yours

Final Exam

- Apr 23 8:30-11:30am, location DMP 310
- across the hall
- exam will be 2.5 hrs
- extra 30 min in case of fire alarms, etc
- closed book
- one page notes, 8.5 "x11", handwritten
- both sides allowed, fine to reuse one side from midterm
- calculator is a good idea
- IDs out and face up
- bags/coats in front - phones off!

Final Emphasis

- covers entire course
- includes material from midterm
- transformations
- viewing
- more than half of exam will be on material not covered in midterm
- color
- rasterization
- lighting/shading
- advanced rendering
- clipping
- hidden surfaces
- blending
- textures
- procedural approaches
- picking
- collision
- antialiasing
- modern hardware
- curves
- visualization

Exam Prep

- another sample final just posted
- from Jan 2007
- homeworks are good practice
- especially old homeworks from when I taught the course

Grading Reminder

- Original grading scheme for course
- 20\% midterm and 25% final
- New grading scheme for course
- 12% midterm and 33% final
- Your course grade will automatically be the max of new and old schemes.

Correction: Premultiplying Colors

- specify opacity with alpha channel: (r,g,b, α)
- $\alpha=1$: opaque, $\alpha=.5$: translucent, $\alpha=0$: transparent
- A over B
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \mathbf{B}$
- but what if \mathbf{B} is also partially transparent?
- $\mathbf{C}=\alpha \mathbf{A}+(1-\alpha) \beta \mathbf{B}=\beta \mathbf{B}+\alpha \mathbf{A}+\beta, \alpha \beta \mathbf{B}$
- $\gamma=\beta+(1-\beta) \alpha=\beta+\alpha-\alpha \beta$
- 3 multiplies, different equations for alpha vs. RGB
- premultiplying by alpha
- $\mathbf{C}^{\prime}=\gamma \mathbf{C}, \mathbf{B}^{\prime}=\beta \mathbf{B}, \mathbf{A}^{\prime}=\alpha \mathbf{A}$
- $\mathbf{C}^{\prime}=\mathbf{B}^{\prime}+\mathbf{A}^{\prime}-\alpha \mathbf{B}^{\prime}$
- $\gamma=\beta+\alpha-\alpha \beta$
- 1 multiply to find C, same equations for alpha and RGB

week6.day1, slide 29.5 Clarification: Midpoint Check

- $f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1+} x_{1} y_{0}$
- implicit equation: on line when $f(x, y)=0$
- above line when $f(x, y)<0$
- below line when $f(x, y)>0$
- check midpoint against line
- midpoint to check is at $x+1, y+.5$
- if $f(x+1, y+5)<0$ then midpoint is below line

```
y=y0
for (x=x0; x <= x1; x++) {
    draw(x,y);
    if (f(x+1, y+.5) < 0) then {
        y = y + 1;
}
```


week6.day1, slide 30
 Clarification: Making It Incremental

- d: midpoint. build off previous computation
- if we stayed at same level, midpoint above line ($\mathrm{d}<0$)
- new midpoint check to set up is $f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)$
- if we moved up one level, midpoint below line ($d>0$)
- new midpoint check set up is $f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)$

```
y=y0
d = f(x0+1, y0+.5)
for (x=x0; x <= x1; x++) {
    draw(x,y);
    if (d<0) then {
        y = y + 1;
        d = d + (x1 - x0) + (y0 - y1)
    } else {
        d = d + (y0 - y1)
}
```

midpoint above: bottom pixel
midpoint below: top pixel

week6.day1, slide 31
 Clarification/Correction: Integer Only

- avoid dealing with non-integer values by doubling both sides
- from $f(x, y)=0$ to $2 f(x, y)=0$
- $f(x, y)=\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1+} x_{1} y_{0}$

```
\(\mathrm{y}=\mathrm{y} 0\)
\(d=f(x 0+1, y 0+.5)\)
for ( \(x=x 0\); \(x\) < \(x 1\); \(x++\) )
        \{
    draw(x,y);
    if ( \(\mathrm{d}<0\) ) then \(\{\)
        \(\mathrm{y}=\mathrm{y}+1\);
        \(\mathrm{d}=\mathrm{d}+(\mathrm{x} 1-\mathrm{x} 0)+\)
        (y0-y1)
    \} else \{
        \(d=d+(y 0-y 1)\)
\}
```


Evaluations - Right Now

- official TA evaluations
- still on paper, not online yet
- unofficial course evaluations - my custom form
- much more specific questions than the official ones
- I do not look at these until after official ones returned, long after grades are out
- if you missed class, blanks will be in extra handouts container in lab, can turn in anonymously to the front desk on $2^{\text {nd }}$ floor
- your feedback helps me improve the course in later years
- please also fill out official teaching surveys for instructor (me!) at the CoursEval website https://eval.olt.ubc.ca/science

Review: Direct Volume Rendering

Review: Visual Encoding

marks: geometric primitives points lines areas

- attributes
- parameters control mark appearance
- separable channels flowing from retina to brain

Review: Channel Ranking By Data Type

Quantitative

Ordered
Categorical
Position
Length
Angle
Slope
Area
Volume
Lightness
Saturation
Hue
Texture
Connection
Containment
[Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM TOG 5:2, 1986]

Review: Integral vs. Separable Channels

- not all channels separable

[Colin Ware, Information Visualization: Perception for Design. Morgan Kaufmann 1999.]

Review: Preattentive Visual Channels

- color alone, shape alone: preattentive

- combined color and shape: requires attention
- search speed linear with distractor count

[Christopher Healey, [www.csc.ncsu.edu/faculty/healey/PP/PP.html]

Nonspatial/Information Visualization II

3D vs 2D Representations

- curve comparison difficult: perspective distortion, occlusion
- dataset is abstract, not inherently spatial
- after data transformation to clusters, linked 2D views of representative curves show more

[van Wijk and van Selow, Cluster and Calendar based Visualization of Time Series Data, InfoVis99

Space vs Time: Showing Change

- animation: show time using temporal change
- good: show process
- good: flip between two things
- bad: flip between between many things
- interference between intermediate frames

[Outside In excerpt. www.geom.uiuc.edu/docs/outreach/oi/evert.mpg] [www.astroshow.com/ccdpho/pluto.gif]
[Edward Tufte. The Visual Display of Quantitative Information, p 172]

Space vs Time: Showing Change

- small multiples: show time using space
- overview: show each time step in array
- compare: side by side easier than temporal
- external cognition vs internal memory
- general technique, not just for temporal changes

Composite Views

- pixel-oriented views
- overviews with high information density

[Jones, Harrold, and Stasko. Visualization of Test Information to Assist Fault Localization.
Proc. ICSE 2002, p 467-477.]
- superimposing/layering
- shared coordinate frame
- redundant visual encoding

[Munzner. Interactive Visualization of Large Graphs and Networks. Stanford CS, 2000]

Composite Views: Glyphs

- internal structure where subregions have different visual channel encodings

Autoglyph and box glyph

[Ward. A Taxonomy of Glyph Placement Strategies for Multidimensional Data Visualization. Information Visualization Journal 1:3-4 (2002), 194--210.]
[Smith, Grinstein, and Bergeron. Interactive data exploration with a supercomputer. Proc. IEEE Visualization, p 248-254, 1991.]

Adjacent: Multiple Views

- different visual encodings show different aspects of the data
- linked highlighting to show where contiguous in one view distributed within another

[Weaver. http://www.personal.psu.edu/cew15/improvise/examples/census]

Adjacent Views

- overview and detail
- same visual encoding, different resolutions
- small multiples
- same visual encoding, different data

Data Reduction

- overviews as aggregation
- focus+context
- show details embedded within context
- distortion: TreeJuxtaposer video
- filtering: SpaceTree demo

[Munzner et al. TreeJuxtaposer: Scalable Tree Comparison using Focus+Context with Guaranteed Visibility. Proc SIGGRAPH 2003, p 453-462]

[Plaisant, Grosjean, and Bederson. SpaceTree: Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical Evaluation. Proc. InfoVis 2002

Dimensionality Reduction

- mapping from high-dimensional space into space of fewer dimensions
- generate new synthetic dimensions
- why is lower-dimensional approximation useful?
- assume true/intrinsic dimensionality of dataset is (much) lower than measured dimensionality!
- only indirect measurement possible?
- fisheries: want spawn rates. have water color, air temp, catch rates...
- sparse data in verbose space?
- documents: word occurrence vectors.

10K+ dimensions, want dozens of topic clusters

DR Example: Image Database

- 4096 D (pixels) to 2D (hand gesture)
- no semantics of new synthetic dimensions from alg.
- assigned by humans after inspecting results

[A Global Geometric Framework for Nonlinear Dimensionality Reduction. Tenenbaum, de Silva and Langford. Science 290 (5500): 2319-2323,29 2000, isomap.stanford.edu]

DR Technique: MDS

- multidimensional scaling
- minimize differences between interpoint distances in high and low dimensions
- minimize objective function: stress

$$
\operatorname{stress}(D, \Delta)=\sqrt{\frac{\sum_{i j}\left(d_{i j}-\delta_{i j}\right)^{2}}{\sum_{i j} \delta_{i j}^{2}}}
$$

D: matrix of lowD distances $d_{i j}$
Δ : matrix of hiD distances $\delta_{i j}$

- Glimmer: MDS on the GPU
[Ingram, Munzner, Olano. Glimmer: Multiscale MDS on the GPU. IEEE TVCG 15(2):249-261, 2009.

Parallel Coordinates

- only two orthogonal axes in the plane
- instead, use parallel axes!

[Hyperdimensional Data Analysis Using Parallel Coordinates. Edward J. Wegman. Journal of the American Statistical Association, Vol. 85, No. 411. (Sep., 1990), pp. 664-675.]

Parallel Coordinates

- point in Cartesian coords is line in par coords
- point in par coords is line in Cartesian n-space

[Inselberg and Dimdale. Parallel Coordinates: A Tool for Visualizing Multi-Dimensional Geometry. IEEE Visualization '90.]

Par Coords: Correllation

Figure 3. Parallel Coordinate Plot of Six-Dimensional Data Illustrating Correlations of $\rho=1, .8, .2,0,-.2,-.8$, and -1 .
[Hyperdimensional Data Analysis Using Parallel Coordinates. Wegman. Journal of the American Statistical ${ }_{3}$ Association, Vol. 85, No. 411. (Sep., 1990), pp. 664-675.]

Hierarchical Parallel Coords: LOD

[Hierarchical Parallel Coordinates for Visualizing Large Multivariate Data Sets. Fua, Ward, and Rundensteiner. IEEE Visualization '99.]

Node-Link Graph Layout

- minimize
- crossings, area, bends/curves
- maximize
- angular resolution, symmetry
- most criteria individually NP-hard
- cannot just compute optimal answer

- heuristics: try to find something reasonable
- criteria mutually incompatible

Force-Directed Placement

- nodes: repel like magnets
- edges: attract like springs
- start from random positions, run to convergence
- very well studied area!
- many people reinvent the wheel

(b)

(e)

(8)

(i)

Interactive Graph Exploration

- geometric and semantic fisheye

van Ham and van Wijk. Interactive Visualization of Small World Graphs. Proc. InfoVis 2005

Treemaps

- containment rather than connection

- emphasize node attributes, not topological structure

Node and link diagram

Treemap

[Fekete and Plaisant. Interactive Information Visualization of a Million Items. Proc InfoVis 2002.

Cushion Treemaps

- show structure with shading
- single parameter controls global vs local view

[van Wijk and van de Wetering. Cushion Treemaps. Proc InfoVis 1999]

Now What?

Beyond 314: Other Graphics Courses

- 424: Geometric Modelling
- will be offered next year
- 426: Computer Animation
- was offered this year
- 514: Image-Based Rendering - Heidrich
- 526: Algorithmic Animation - van de Panne
- 533A: Digital Geometry - Sheffer
- 533B: Animation Physics - Bridson
- 533C: Information Visualization - Munzner

Beyond UBC CS

- SIGGRAPH conference in Vancouver next year!
- August 7 - August 112011
- ~20K people: incredible combination of research, entertainment, art
- Electronic Theater, Exhibit, ETech, ...
- pricey: but student rate, student volunteer program
- local SIGGRAPH chapter
- talk series, SPARK FX festival, ...
- http://siggraph.ca

