
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Spatial/Scientific Visualization

Week 12, Fri Apr 9

2

News
• Reminders

• H4 due Mon 4/11 5pm
• P4 due Wed 4/13 5pm

• Extra TA office hours in lab 005 for P4/H4
• Fri 4/9 11-12, 2-4 (Garrett)
• Mon 4/12 11-1, 3-5 (Garrett)
• Tue 4/13 3:30-5 (Kai)
• Wed 4/14 2-4, 5-7 (Shailen)
• Thu 4/15 3-5 (Kai)
• Fri 4/16 11-4 (Garrett)

3

Cool Pixar Graphics Talk Today!!

• The Funnest Job on Earth: A Presentation of
Techniques and Technologies Used to
Create Pixar's Animated Films (version 2.0)

• Wayne Wooten, Pixar
• Fri 4/9, 4:00 to 5:30 pm, Dempster 110

• great preview of CPSC 426, Animation :-)

• overlaps my usual office hours :-(
• poll: who was planning to come today?

4

Project 4
• I've now sent proposal feedback on proposals to everyone

where I have specific concerns/responses
• no news is good news

• global reminders/warnings
• you do need framerate counter in your HUD!
• be careful with dark/moody lighting

• can make gameplay impossible
• backup plan: keystroke to brighten by turning more/ambient light

• reminder on timestamps
• if you demo on your machine, I will check timestamps of files to

ensure they match code you submitted through handin
• they must match! do *not* change anything in the directory
• clone code into new directory to keep developing or fix tiny bugs

• so that I can quickly check that you've not changed anything else

5

Review: GPGPU Programming

• General Purpose GPU
• use graphics card as SIMD parallel processor
• textures as arrays
• computation: render large quadrilateral
• multiple rendering passes

6

Review: Splines

• spline is parametric
curve defined by control
points
• knots: control points

that lie on curve
• engineering drawing:

spline was flexible
wood, control points
were physical weights

A Duck (weight)

Ducks trace out curve
7

Review: Hermite Spline

• user provides
• endpoints
• derivatives at endpoints

8

Review: Bézier Curves

• four control points, two of which are knots
• more intuitive definition than derivatives

• curve will always remain within convex hull
(bounding region) defined by control points

9

Review: Basis Functions
• point on curve obtained by multiplying each control

point by some basis function and summing

10

Review: Comparing Hermite and Bézier
BézierHermite

11

Review: Sub-Dividing Bézier Curves
• find the midpoint of the line joining M012, M123.

call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

12

Review: de Casteljau’s Algorithm

• can find the point on Bézier curve for any parameter
value t with similar algorithm
• for t=0.25, instead of taking midpoints take points 0.25 of the

way

P0

P1 P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

13

Review: Continuity

• continuity definitions
• C0: share join point
• C1: share continuous derivatives
• C2: share continuous second derivatives

• piecewise Bézier: no continuity guarantees

14

Review: Geometric Continuity
• derivative continuity is important for animation

• if object moves along curve with constant parametric
speed, should be no sudden jump at knots

• for other applications, tangent continuity suffices
• requires that the tangents point in the same direction
• referred to as G1 geometric continuity
• curves could be made C1 with a re-parameterization
• geometric version of C2 is G2, based on curves

having the same radius of curvature across the knot

15

Achieving Continuity

• Hermite curves
• user specifies derivatives, so C1 by sharing points and

derivatives across knot
• Bezier curves

• they interpolate endpoints, so C0 by sharing control pts
• introduce additional constraints to get C1

• parametric derivative is a constant multiple of vector joining
first/last 2 control points

• so C1 achieved by setting P0,3=P1,0=J, and making P0,2 and J and
P1,1 collinear, with J-P0,2=P1,1-J

• C2 comes from further constraints on P0,1 and P1,2

• leads to...

16

B-Spline Curve
• start with a sequence of control points
• select four from middle of sequence
 (pi-2, pi-1, pi, pi+1)

• Bezier and Hermite goes between pi-2 and pi+1

• B-Spline doesn’t interpolate (touch) any of them but
approximates the going through pi-1 and pi

P0

P1

P3

P2

P4 P5

P6

17

B-Spline

• by far the most popular spline used
• C0, C1, and C2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

18

B-Spline

• locality of points

19

Geometric Modelling

• much, much more in CPSC 424!
• offered next year

20

Spatial/Scientific Visualization

21

Reading

• FCG Chapter 28 Spatial Field Visualization
• Chap 23 (2nd ed)

22

Surface Graphics

• objects explicitly defined by surface or
boundary representation
• mesh of polygons

200 polys 1000 polys 15000 polys 23

Surface Graphics
• pros

• fast rendering algorithms available
• hardware acceleration cheap
• OpenGL API for programming
• use texture mapping for added realism

• cons
• discards interior of object, maintaining only the shell
• operations such cutting, slicing & dissection not

possible
• no artificial viewing modes such as semi-

transparencies, X-ray
• surface-less phenomena such as clouds, fog & gas

are hard to model and represent

24

Volume Graphics
• for some data, difficult to create polygonal mesh
• voxels: discrete representation of 3D object

• volume rendering: create 2D image from 3D object
• translate raw densities into colors and

transparencies
• different aspects of the dataset can be emphasized

via changes in transfer functions

25

Volume Graphics

• pros
• formidable technique for data exploration

• cons
• rendering algorithm has high complexity!
• special purpose hardware costly (~$3K-$10K)

volumetric human head (CT scan) 26

Isosurfaces

• 2D scalar fields: isolines
• contour plots, level sets
• topographic maps

• 3D scalar fields: isosurfaces

27

Volume Graphics: Examples

anatomical atlas from visible
human (CT & MRI) datasets

industrial CT - structural failure,
security applications

flow around airplane wing shockwave visualization: simulation
with Navier-Stokes PDEs 28

Isosurface Extraction

• array of discrete point
samples at grid points
• 3D array: voxels

• find contours
• closed, continuous
• determined by iso-value

• several methods
• marching cubes is most

common
1 2 3 4 3

2 7 8 6 2

3 7 9 7 3

1 3 6 6 3

0 1 1 3 2

Iso-value = 5

29

MC 1: Create a Cube

• consider a cube defined by eight data values

(i,j,k) (i+1,j,k)

(i,j+1,k)

(i,j,k+1)

(i,j+1,k+1) (i+1,j+1,k+1)

(i+1,j+1,k)

(i+1,j,k+1)

30

MC 2: Classify Each Voxel

• classify each voxel according to whether lies
• outside the surface (value > iso-surface

value)
• inside the surface (value <= iso-surface value)

8
Iso=7

8

8

55

1010

10

Iso=9

=inside
=outside

31

MC 3: Build An Index

• binary labeling of each voxel to create index

v1 v2

v6

v3v4

v7v8

v5

inside =1
outside=0

11110100

00110000
Index:

v1 v2 v3 v4 v5 v6 v7 v8

32

MC 4: Lookup Edge List

• use index to access array storing list of edges
• all 256 cases can be derived from 15 base

cases

33

MC 4: Example

• index = 00000001
• triangle 1 = a, b, c

a

b

c

34

MC 5: Interpolate Triangle Vertex

• for each triangle edge
• find vertex location along edge using linear

interpolation of voxel values

=10
=0

T=8T=5

i i+1x

[]
[] []!

!
"

#
$$
%

&

'+

'
+=

iviv

ivT
ix

1

35

MC 6: Compute Normals

• calculate the normal at each cube vertex
• use linear interpolation to compute the

polygon vertex normal

1,,1,,

,1,,1,

,,1,,1

!+

!+

!+

!=

!=

!=

kjikjiz

kjikjiy

kjikjix

vvG

vvG

vvG

36

MC 7: Render!

37

Direct Volume Rendering

• do not compute surface

38

Rendering Pipeline

Classify

39

Classification

• data set has application-specific values
• temperature, velocity, proton density, etc.

• assign these to color/opacity values to make
sense of data

• achieved through transfer functions

40

Transfer Functions

• map data value to color and opacity

41

Transfer Functions

Human Tooth CT

α(f)RGB(f)

f

RGB

shading,
compositing…

α

Gordon Kindlmann 42

Setting Transfer Functions

• can be difficult, unintuitive, and slow

f

α

f

α

f

α

f

α

Gordon Kindlmann 43

Rendering Pipeline

Classify

Shade

44

Light Effects

• usually only consider reflected part

Light

absorbed

transmitted

reflected

Light=refl.+absorbed+trans.

Light

ambient

specular

diffuse

ssddaa
IkIkIkI ++=

Light=ambient+diffuse+specular

45

Rendering Pipeline

Classify

Shade

Interpolate

46

Interpolation

• given:

• needed:

2D 1D
• given:

• needed:

nearest
neighbor

linear

47

Rendering Pipeline

Classify

Shade

Interpolate

Composite

48

Volume Rendering Algorithms
• ray casting

• image order, forward viewing

• splatting
• object order, backward viewing

• texture mapping
• object order
• back-to-front compositing

49

Ray Traversal Schemes

Depth

Intensity
Max

Average

Accumulate
First

50

Ray Traversal - First

• first: extracts iso-surfaces (again!)

Depth

Intensity

First

51

Ray Traversal - Average

• average: looks like X-ray

Depth

Intensity

Average

52

Ray Traversal - MIP

• max: Maximum Intensity Projection
• used for Magnetic Resonance Angiogram

Depth

Intensity
Max

53

Ray Traversal - Accumulate

• accumulate: make transparent layers visible

Depth

Intensity

Accumulate

54

Splatting

• each voxel represented as fuzzy ball
• 3D gaussian function
• RGBa value depends on transfer function

• fuzzy balls projected on screen, leaving
footprint called splat
• composite front to back, in object order

55

Texture Mapping
• 2D: axis aligned 2D textures

• back to front compositing
• commodity hardware support
• must calculate texture

coordinates, warp to image
plane

• 3D: image aligned 3D texture
• simple to generate texture

coordinates

