Spatial/Scientific Visualization
Week 12, Fri Apr 9
http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Review: GPGPU Programming

- General Purpose GPU
- use graphics card as SIMD parallel processor
- textures as arrays
- computation: render large quadrilateral
- multiple rendering passes
- Reminders
- H4 due Mon $4 / 115 \mathrm{pm}$
- P4 due Wed $4 / 135$ pm
- Extra TA office hours in lab 005 for P4/H4
- Fri 4/9 11-12, 2-4 (Garrett)
- Mon 4/12 11-1, 3-5 (Garrett)
- Tue 4/13 3:30-5 (Kai)
- Wed 4/14 2-4, 5-7 (Shailen)
- Thu 4/15 3-5 (Kai)
- Fri 4/16 11-4 (Garrett)

Cool Pixar Graphics Talk Today!!

- The Funnest Job on Earth: A Presentation of Techniques and Technologies Used to
Create Pixar's Animated Films (version 2.0)
- Wayne Wooten, Pixar
- Fri 4/9, 4:00 to 5:30 pm, Dempster 110
- great preview of CPSC 426, Animation :-)
- overlaps my usual office hours :-(
- poll: who was planning to come today?

Project 4

- I've now sent proposal feedback on proposals to everyone where I have specific concerns/responses
- no news is good news
global reminders/warnings
- you do need framerate counter in your HUD!
- be careful with dark/moody lighting
- can make gameplay impossible
- backup plan: keystroke to brighten by turning more/ambient light
- reminder on timestamps
- if you demo on your machine, I will check timestamps of files
Io ensure they match code you submitted through handin - they must match! do *ot** change anything in the directory
clone code into new directory to keep developing or fix tiny - so that I can quickly check that you've not changed anything else

Review: Splines

- spline is parametric curve defined by control points
- knots: control points that lie on curve - engineering drawing: spline was flexible wood, control points were physical weights

Review: Hermite Spline

- user provides
- endpoints
- derivatives at endpoints

Review: Bézier Curves

- four control points, two of which are knots - more intuitive definition than derivatives
- curve will always remain within convex hull (bounding region) defined by control points

Review: Basis Functions

point on curve obtained by multiplying each control point by some basis function and summing

Review: Comparing Hermite and Bézier Hermite

Bézier

Review: Continuity

- piecewise Bézier: no continuity guarantees
- continuity definitions
- C^{0} : share join point

- C^{1} : share continuous derivatives
- C^{2} : share continuous second derivatives C_{0} continuity $\quad C_{0} \& C_{1}$ continuity $\quad C_{0} \& C_{1} \& C_{2}$ continuity

Review: Geometric Continuity

- derivative continuity is important for animation - if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices - requires that the tangents point in the same direction - referred to as G^{1} geometric continuity
- curves could be made C^{1} with a re-parameterization curves could be made C^{2} with a re-parameteriza geometric version of C^{2} is G^{2}, based on curves

Review: Sub-Dividing Bézier Curves

- find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}

Achieving Continuity

Hermite curves

user specifies derivatives, so C^{1} by sharing points and derivatives across knot
Bezier curves

- they interpolate endpoints, so C^{0} by sharing control pts - introduce additional constraints to get C^{1}

$$
\begin{aligned}
& \text { - parametric cerivative is a constant multiple of vector joining } \\
& \text { firstlast } 2 \text { control points }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - so } C^{1} \text { achieved by setting } P_{0,0}=P_{1,0}=J \text {, and making } P_{0,2} \text { and } J \text { and }
\end{aligned}
$$

- leads to...

Review: de Casteljau's Algorithm

- can find the point on Bézier curve for any parameter value t with similar algorithm
- for $t=0.25$, instead of taking midpoints take points 0.25 of the

emo: www.saltire com/applets/advanced geometry/spline/spline.htm

B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
($\left.p_{i-2}, p_{i-1}, p_{i,}, p_{i+1}\right)$
Bezier and Hermite goes between p_{i-2} and p_{i+1} B-Spline doesn't interpolate (touch) any of them but approximates the going through p_{i-1} and p_{i}

- by far the most popular spline used
- $\mathrm{C}_{0}, \mathrm{C}_{1}$, and C_{2} continuous
- locality of points

Local modification of a B.spine curve. Changing one of the contol points in (a) prod
curve (b) which is modified only in the neighborihoo of the atteract control point

Geometric Modelling

- much, much more in CPSC 424! - offered next year

Reading

- FCG Chapter 28 Spatial Field Visualization - Chap 23 (2nd ed)

Surface Graphics

- objects explicitly defined by surface or boundary representation
- mesh of polygons

Surface Graphics

- pros
- fast rendering algorithms available
hardware acceleration cheap
- OpenGL API for programming
- use texture mapping for added realism
- cons
- discards interior of object, maintaining only the shell operations such cutting, slicing \& dissection not possible
no artificial viewing modes such as semi
transparencies, X-ray
surface-less phenomena such as clouds, fog \& gas are hard to model and represent

Volume Graphics

- for some data, difficult to create polygonal mesh
- voxels: discrete representation of 3D object
- volume rendering: create 2D image from 3D object
- translate raw densities into colors and transparencies
- different aspects of the dataset can be emphasized via changes in transfer functions

Volume Graphics

pros

- formidable technique for data exploration
- cons
- rendering algorithm has high complexity!
- special purpose hardware costly ($\sim 3 \mathrm{~K}-\$ 10 \mathrm{~K}$)

MC 1: Create a Cube

- consider a cube defined by eight data values

MC 2: Classify Each Voxel

- classify each voxel according to whether lies - outside the surface (value > iso-surface value)
- inside the surface (value <= ise-surface value)

Volume Graphics: Examples

anatomical atlas from
human (CT \& MRI) human (CT \& MRI) datasets

edustriact
industrial CT - structura
security applications

Isosurfaces

- 2D scalar fields: isolines
- contour plots, level sets
- topographic maps
- 3D scalar fields: isosurfaces

MC 3: Build An Index

- binary labeling of each voxel to create index

sosurface Extraction

- array of discrete point samples at grid points
-3D array: voxels
- find contours
- closed, continuous
- determined by iso-value
- several methods
- marching cubes is most ${ }_{1}$ common

MC 4: Lookup Edge List

- use index to access array storing list of edges - all 256 cases can be derived from 15 base cases

MC 5: Interpolate Triangle Vertex

- for each triangle edge
- find vertex location along edge using linear interpolation of voxel values
- index = 00000001
- triangle $1=a, b, c$

Direct Volume Rendering - do not compute surface

$0=10$
-0
$\mathrm{T}=5 \quad x=i+\left(\frac{T-v[i]}{v[i+1]}\right)$

MC 6: Compute Normals

- calculate the normal at each cube vertex - use linear interpolation to compute the polygon vertex normal
$G_{x}=v_{i+1, j, k}-v_{i-1, j, k}$
$G_{y}=v_{i, j+1, k}-v_{i, j-1, k}$
$G_{z}=v_{i, j, k+1}-v_{i, j, k-1}$

Classification

- data set has application-specific values
- temperature, velocity, proton density, etc.
- assign these to color/opacity values to make sense of data
- achieved through transfer functions

Setting Transfer Functions - can be difficult, unintuitive, and slow

Rendering Pipeline

Light Effects

- usually only consider reflected part

Light=refl.+absorbed+trans.

Light=ambient+diffuse+specular
$I=k_{a} I_{a}+k_{d} I_{d}+k_{s} I_{s}$

Volume Rendering Algorithms

- ray casting - image order, forward viewing

- splatting

- texture mapping
- object order
- back-to-front compositing

Ray Traversal Schemes

Ray Traversal - Accumulate - accumulate: make transparent layers visible

- first: extracts iso-surfaces (again!)
epth
${ }_{53}$
- average: looks like X-ray

Ray Traversal - MIP

- max: Maximum Intensity Projection - used for Magnetic Resonance Angiogram

Texture Mapping

- 2D: axis aligned 2D textures - back to front compositing - commodity hardware suppor
- must calculate texture coordinates, warp to image plane
- 3D: image aligned 3D texture - simple to generate texture coordinates

