University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010

Tamara Munzner

Modern Hardware II, Curves

Week 12, Wed Apr 7

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

- Extra TA office hours in lab 005 for P4/H4
- Wed 4/7 2-4, 5-7 (Shailen)
- Thu 4/8 3-5 (Kai)
- Fri 4/9 11-12, 2-4 (Garrett)
- Mon 4/12 11-1, 3-5 (Garrett)
- Tue 4/13 3:30-5 (Kai)
- Wed 4/14 2-4, 5-7 (Shailen)
- Thu 4/15 3-5 (Kai)
- Fri 4/16 11-4 (Garrett)

News

- please remember to fill out teaching evaluation surveys at CoursEval site https://eval.olt.ubc.ca/science

Review: Aliasing

- incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
- supersample
- sample at higher frequency
- low pass filtering
- remove high frequency function parts
- aka prefiltering, band-limiting

Review: Image As Signal

- 1D slice of raster image
- discrete sampling of 1D spatial signal
- theorem
- any signal can be represented as an (infinite) sum of sine waves at different frequencies

Examples from Foley, van Dam, Feiner, and Hughes

Review: Sampling Theorem and Nyquist Rate

- Shannon Sampling Theorem
- continuous signal can be completely recovered from its samples iff sampling rate greater than twice maximum frequency present in signal
- sample past Nyquist Rate to avoid aliasing
- twice the highest frequency component in the image's spectrum

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Columbia University.)

Review: Low-Pass Filtering

Review: Rendering Pipeline

- so far rendering pipeline as a specific set of stages with fixed functionality
- modern graphics hardware more flexible
- programmable "vertex shaders" replace several geometry processing stages
- programmable "fragment/pixel shaders" replace texture mapping stage
- hardware with these features now called Graphics Processing Unit (GPU)
- program shading hardware with assembly language analog, or high level shading language

Review: Vertex Shaders

- replace model/view transformation, lighting, perspective projection
- a little assembly-style program is executed on every individual vertex independently
- it sees:
- vertex attributes that change per vertex:
- position, color, texture coordinates...
- registers that are constant for all vertices (changes are expensive):
- matrices, light position and color, ...
- temporary registers
- output registers for position, color, tex coords...

Review: Skinning Vertex Shader

- arm example:
- M1: matrix for upper arm
- M2: matrix for lower arm

Review: Fragment Shaders

- fragment shaders operate on fragments in place of texturing hardware
- after rasterization
- before any fragment tests or blending
- input: fragment, with screen position, depth, color, and set of texture coordinates
- access to textures, some constant data, registers
- compute RGBA values for fragment, and depth
- can also kill a fragment (throw it away)

Modern Hardware

- finish up nice slides by Gordon Wetzstein
- lecture 23 from
- http://www.ugrad.cs.ubc.ca/~cs314/Vjan2009/
- slides, downloadable demos

Cg Example - Vertex Shader

- Vertex Shader: animated teapot
void main(// input
float4 position
: POSITION, // position in object coordinates
float3 normal
: NORMAL, // normal

```
// user parameters
uniform float4x4 objectMatrix, // object coordinate system matrix
uniform float4x4 objectMatrixIT, // object coordinate system matrix inverse transpose
uniform float4x4 modelViewMatrix, // modelview matrix
uniform float4x4 modelViewMatrixIT, // modelview matrix inverse transpose
uniform float4x4 projectionMatrix, // projection matrix
uniform float deformation, // deformation parameter
uniform float3 lightPosition, // light position
uniform float3 lightAmbient, // light ambient parameter
uniform float3 lightDiffuse,
uniform float3 lightSpecular,
uniform float3 lightAttenuation,
uniform float3 materialEmission,
uniform float3 materialAmbient,
uniform float3 materialDiffuse,
uniform float3 materialSpecular,
uniform float materialShininess,
// output
out float4 outPosition : POSITION, // position in clip space
out float4 outColor : COLOR ) // out color
```


Cg Example - Vertex Shader
 // compute the specular term

```
// transform position from object space to clip space
float4 positionObject = mul(objectMatrix, position);
// transform normal into world space
float4 normalObject = mul(objectMatrixIT, float4(normal,1));
float4 normalWorld = mul(modelViewMatrixIT, normalObject);
// world position of light
float4 lightPositionWorld = \
    mul(modelViewMatrix, float4(lightPosition,1));
// assume viewer position is in origin
float4 viewerPositionWorld = float4(0.0, 0.0, 0.0, 1.0);
// apply deformation
positionObject.xyz = positionObject.xyz + \
    deformation * normalize(normalObject.xyz);
float4 positionWorld = mul(modelViewMatrix, positionObject);
outPosition = mul(projectionMatrix, positionWorld);
// two vectors
float3 P = positionWorld.xyz;
float3 N = normalize(normalWorld.xyz);
// compute the ambient term
float3 ambient = materialAmbient*lightAmbient;
// compute the diffuse term
float3 L = normalize(lightPositionWorld.xyz - P);
float diffuseFactor = max(dot(N, L), 0);
float3 diffuse = materiaIDiffuse * lightDiffuse * diffuseFactor;
```

float3 V = normalize(viewerPositionWorld.xyz - 1
positionWorld.xyz);
float3 H = normalize($\mathrm{L}+\mathrm{V}$);
float specularFactor $=1$
pow(max($\operatorname{dot}(\mathrm{N}, \mathrm{H}), 0)$, materialShininess);
if (diffuseFactor $<=0$) specularFactor $=0$;
float3 specular =
materialSpecular * \backslash
lightSpecular*
specularFactor;
// attenuation factor
float distanceLightVertex $=1$
length(P-lightPositionWorld.xyz);
float attenuationFactor $=1$
1 / (lightAttenuation. $x+1$
distanceLightVertex*lightAttenuation. y + ।
distanceLightVertex*distanceLightVertex*\}
lightAttenuation.z);
// set output color
outColor.rgb $=\quad$ materialEmission +1
ambient + 1
attenuationFactor * \backslash
(diffuse + specular);
outColor.w = 1;
\}

Cg Example - Phong Shading

vertex shader

```
void main( float4 position : POSITION, // position in object coordinates
    float3 normal : NORMAL, // normal
    // user parameters
    ...
    // output
    out float4 outTexCoord0 : TEXCOORD0, // world normal
    out float4 outTexCoord1 : TEXCOORD1, // world position
    out float4 outTexCoord2 : TEXCOORD2, // world light position
    out float4 outPosition : POSITION) // position in clip space
{
    // transform position from object space to clip space
    ..
    // transform normal into world space
    // set world normal as out texture coordinate0
    outTexCoord0 = normalWorld;
    // set world position as out texture coordinate1
    outTexCoord1 = positionWorld;
    // world position of light
    outTexCoord2 = mul(modelViewMatrix, float4(lightPosition,1));
}
```


Cg Example - Phong Shading

fragment shader

```
void main( float4 normal : TEXCOORD0, // normal
    float4 position : TEXCOORD1, // position
    float4 lightPosition : TEXCOORD2, // light position
    out float4 outColor : COLOR)
{
    // compute the ambient term
    ...
    // compute the diffuse term
    ...
    // compute the specular term
    // attenuation factor
    ...
    // set output color
    outColor.rgb = materialEmission + ambient + attenuationFactor * (diffuse + specular);
}
```


GPGPU

- general purpose computation on the GPU
- in the past: access via shading languages and rendering pipeline
- now: access via cuda interface in C environment

GPGPU Applications

Curves

Reading

- FCG Chap 15 Curves
- Ch 13 2nd edition

Parametric Curves

- parametric form for a line:

$$
\begin{aligned}
& x=x_{0} t+(1-t) x_{1} \\
& y=y_{0} t+(1-t) y_{1} \\
& z=z_{0} t+(1-t) z_{1}
\end{aligned}
$$

- x, y and z are each given by an equation that involves:
- parameter t
- some user specified control points, x_{0} and x_{1}
- this is an example of a parametric curve

Splines

- a spline is a parametric curve defined by control points
- term "spline" dates from engineering drawing, where a spline was a piece of flexible wood used to draw smooth curves
- control points are adjusted by the user to control shape of curve

Splines - History

- draftsman used 'ducks' and strips of wood (splines) to draw curves
- wood splines have secondorder continuity, pass through the control points

Hermite Spline

- hermite spline is curve for which user provides:
- endpoints of curve
- parametric derivatives of curve at endpoints
- parametric derivatives are $d x / d t, d y / d t, d z / d t$
- more derivatives would be required for higher order curves

Basis Functions

- a point on a Hermite curve is obtained by multiplying each control point by some function and summing
- functions are called basis functions

Sample Hermite Curves

Bézier Curves

- similar to Hermite, but more intuitive definition of endpoint derivatives
- four control points, two of which are knots

Bézier Curves

- derivative values of Bezier curve at knots dependent on adjacent points

$$
\begin{aligned}
& \nabla p_{1}=3\left(p_{2}-p_{1}\right) \\
& \nabla p_{4}=3\left(p_{4}-p_{3}\right)
\end{aligned}
$$

Bézier Blending Functions

- look at blending functions
- family of polynomials called order-3 Bernstein polynomials

$$
p(t)=\left[\begin{array}{c}
(1-t)^{3} \\
3 t(1-t)^{2} \\
3 t^{2}(1-t) \\
t^{3}
\end{array}\right]^{\mathrm{T}}\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4}
\end{array}\right]
$$

Bézier Blending Functions

- every point on curve is linear combination of control points
- weights of combination are all positive
- sum of weights is 1
- therefore, curve is a convex combination of the control points

Bézier Curves

- curve will always remain within convex hull (bounding region) defined by control points
(q)

(p)
(C)

Bézier Curves

- interpolate between first, last control points
- $1^{\text {st }}$ point's tangent along line joining $1^{\text {st }}, 2^{\text {nd }}$ pts
- $4^{\text {th }}$ point's tangent along line joining $3^{\text {rd }}, 4^{\text {th }} \mathrm{pts}$

Comparing Hermite and Bézier Hermite
 Bézier

Rendering Bezier Curves: Simple

- evaluate curve at fixed set of parameter values, join points with straight lines
- advantage: very simple
- disadvantages:
- expensive to evaluate the curve at many points
- no easy way of knowing how fine to sample points, and maybe sampling rate must be different along curve
- no easy way to adapt: hard to measure deviation of line segment from exact curve

Rendering Beziers: Subdivision

- a cubic Bezier curve can be broken into two shorter cubic Bezier curves that exactly cover original curve
- suggests a rendering algorithm:
- keep breaking curve into sub-curves
- stop when control points of each sub-curve are nearly collinear
- draw the control polygon: polygon formed by control points

Sub-Dividing Bezier Curves

- step 1: find the midpoints of the lines joining the original control vertices. call them M_{01}, M_{12}, M_{23}

Sub-Dividing Bezier Curves

- step 2: find the midpoints of the lines joining M_{01}, M_{12} and M_{12}, M_{23}. call them M_{012}, M_{123}

Sub-Dividing Bezier Curves

- step 3: find the midpoint of the line joining M_{012}, M_{123}. call it M_{0123}

Sub-Dividing Bezier Curves

- curve $P_{0}, M_{01}, M_{012}, M_{0123}$ exactly follows original from $t=0$ to $t=0.5$
- curve $M_{0123}, M_{123}, M_{23}, P_{3}$ exactly follows original from $t=0.5$ to $t=1$

Sub-Dividing Bezier Curves

- continue process to create smooth curve

de Casteljau's Algorithm

- can find the point on a Bezier curve for any parameter value t with similar algorithm
- for $t=0.25$, instead of taking midpoints take points 0.25 of the way

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

Longer Curves

- a single cubic Bezier or Hermite curve can only capture a small class of curves
- at most 2 inflection points
- one solution is to raise the degree
- allows more control, at the expense of more control points and higher degree polynomials
- control is not local, one control point influences entire curve
- better solution is to join pieces of cubic curve together into piecewise cubic curves
- total curve can be broken into pieces, each of which is cubic
- local control: each control point only influences a limited part of the curve
- interaction and design is much easier

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

Continuity

- when two curves joined, typically want some degree of continuity across knot boundary
- C0, "C-zero", point-wise continuous, curves share same point where they join
- C1, "C-one", continuous derivatives
- C2, "C-two", continuous second derivatives

$\mathrm{C}_{0} \& \mathrm{C}_{1}$ continuity
$\mathrm{C}_{0} \& \mathrm{C}_{1} \& \mathrm{C}_{2}$ continuity

Geometric Continuity

- derivative continuity is important for animation
- if object moves along curve with constant parametric speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices
- requires that the tangents point in the same direction
- referred to as G^{1} geometric continuity
- curves could be made C^{1} with a re-parameterization
- geometric version of C^{2} is G^{2}, based on curves having the same radius of curvature across the knot

Achieving Continuity

- Hermite curves
- user specifies derivatives, so C^{1} by sharing points and derivatives across knot
- Bezier curves
- they interpolate endpoints, so C^{0} by sharing control pts
- introduce additional constraints to get C^{1}
- parametric derivative is a constant multiple of vector joining first/last 2 control points
- so C^{1} achieved by setting $P_{0,3}=P_{1,0}=J$, and making $P_{0,2}$ and J and $P_{1,1}$ collinear, with $J-P_{0,2}=P_{1,1}-J$
- C^{2} comes from further constraints on $P_{0,1}$ and $P_{1,2}$
- leads to...

B-Spline Curve

- start with a sequence of control points
- select four from middle of sequence
$\left(p_{i-2}, p_{i-1}, p_{i}, p_{i+1}\right)$
- Bezier and Hermite goes between p_{i-2} and p_{i+1}
- B-Spline doesn't interpolate (touch) any of them but approximates the going through p_{i-1} and p_{i}

B-Spline

- by far the most popular spline used
- $\mathrm{C}_{0}, \mathrm{C}_{1}$, and C_{2} continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

B-Spline

- locality of points

Figure 10-41

Local modification of a B-spline curve. Changing one of the control points in (a) produces curve (b), which is modified only in the neighborhood of the altered control point.

