
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Modern Hardware II, Curves

Week 12, Wed Apr 7

2

News

• Extra TA office hours in lab 005 for P4/H4
• Wed 4/7 2-4, 5-7 (Shailen)
• Thu 4/8 3-5 (Kai)
• Fri 4/9 11-12, 2-4 (Garrett)
• Mon 4/12 11-1, 3-5 (Garrett)
• Tue 4/13 3:30-5 (Kai)
• Wed 4/14 2-4, 5-7 (Shailen)
• Thu 4/15 3-5 (Kai)
• Fri 4/16 11-4 (Garrett)

3

News

• please remember to fill out teaching
evaluation surveys at CoursEval site
https://eval.olt.ubc.ca/science

4

Review: Aliasing

• incorrect appearance of high frequencies as
low frequencies

• to avoid: antialiasing
• supersample

• sample at higher frequency
• low pass filtering

• remove high frequency function parts
• aka prefiltering, band-limiting

5

Review: Image As Signal

• 1D slice of raster image
• discrete sampling of 1D spatial signal

• theorem
• any signal can be represented as an (infinite)

sum of sine waves at different frequencies

Examples from Foley, van Dam, Feiner, and Hughes
Pixel position across scanline

In
te

ns
ity

6

Review: Sampling Theorem and Nyquist Rate

• Shannon Sampling Theorem
• continuous signal can be completely recovered from

its samples iff sampling rate greater than twice
maximum frequency present in signal

• sample past Nyquist Rate to avoid aliasing
• twice the highest frequency component in the

image’s spectrum

7

Review: Low-Pass Filtering

8

Review: Rendering Pipeline
• so far rendering pipeline as a specific set of stages

with fixed functionality
• modern graphics hardware more flexible

• programmable “vertex shaders” replace several
geometry processing stages

• programmable “fragment/pixel shaders” replace
texture mapping stage

• hardware with these features now called Graphics
Processing Unit (GPU)

• program shading hardware with assembly language
analog, or high level shading language

9

Review: Vertex Shaders
• replace model/view transformation, lighting,

perspective projection
• a little assembly-style program is executed on every

individual vertex independently
• it sees:

• vertex attributes that change per vertex:
• position, color, texture coordinates…

• registers that are constant for all vertices (changes
are expensive):

• matrices, light position and color, …
• temporary registers
• output registers for position, color, tex coords…

10

Review: Skinning Vertex Shader

• arm example:
• M1: matrix for upper arm
• M2: matrix for lower arm

Upper arm:Upper arm:
weight for M1=1weight for M1=1
weight for M2=0weight for M2=0

Lower arm:Lower arm:
weight for M1=0weight for M1=0
weight for M2=1weight for M2=1

Transition zone:Transition zone:
weight for M1 between 0..1weight for M1 between 0..1
weight for M2 between 0..1weight for M2 between 0..1

11

Review: Fragment Shaders
• fragment shaders operate on fragments in place of

texturing hardware
• after rasterization
• before any fragment tests or blending

• input: fragment, with screen position, depth, color,
and set of texture coordinates

• access to textures, some constant data, registers
• compute RGBA values for fragment, and depth

• can also kill a fragment (throw it away)

12

Modern Hardware

• finish up nice slides by Gordon Wetzstein
• lecture 23 from
• http://www.ugrad.cs.ubc.ca/~cs314/Vjan2009/

• slides, downloadable demos

13

Cg Example – Vertex Shader

• Vertex Shader: animated teapot
void main(// input

float4 position : POSITION, // position in object coordinates
float3 normal : NORMAL, // normal

// user parameters
uniform float4x4 objectMatrix, // object coordinate system matrix
uniform float4x4 objectMatrixIT, // object coordinate system matrix inverse transpose
uniform float4x4 modelViewMatrix, // modelview matrix
uniform float4x4 modelViewMatrixIT, // modelview matrix inverse transpose
uniform float4x4 projectionMatrix, // projection matrix
uniform float deformation, // deformation parameter
uniform float3 lightPosition, // light position
uniform float3 lightAmbient, // light ambient parameter
uniform float3 lightDiffuse, // light diffuse parameter
uniform float3 lightSpecular, // light specular parameter
uniform float3 lightAttenuation, // light attenuation parameter - constant, linear, quadratic
uniform float3 materialEmission, // material emission parameter
uniform float3 materialAmbient, // material ambient parameter
uniform float3 materialDiffuse, // material diffuse parameter
uniform float3 materialSpecular, // material specular parameter
uniform float materialShininess, // material shininess parameter

// output
out float4 outPosition : POSITION, // position in clip space
out float4 outColor : COLOR) // out color

{

14

Cg Example – Vertex Shader
// transform position from object space to clip space
float4 positionObject = mul(objectMatrix, position);

// transform normal into world space
float4 normalObject = mul(objectMatrixIT, float4(normal,1));
float4 normalWorld = mul(modelViewMatrixIT, normalObject);

// world position of light
float4 lightPositionWorld = \

mul(modelViewMatrix, float4(lightPosition,1));

// assume viewer position is in origin
float4 viewerPositionWorld = float4(0.0, 0.0, 0.0, 1.0);

// apply deformation
positionObject.xyz = positionObject.xyz + \

deformation * normalize(normalObject.xyz);
float4 positionWorld = mul(modelViewMatrix, positionObject);
outPosition = mul(projectionMatrix, positionWorld);

// two vectors
float3 P = positionWorld.xyz;
float3 N = normalize(normalWorld.xyz);

// compute the ambient term
float3 ambient = materialAmbient*lightAmbient;

// compute the diffuse term
float3 L = normalize(lightPositionWorld.xyz - P);
float diffuseFactor = max(dot(N, L), 0);
float3 diffuse = materialDiffuse * lightDiffuse * diffuseFactor;

// compute the specular term
float3 V = normalize(viewerPositionWorld.xyz - \

 positionWorld.xyz);
float3 H = normalize(L + V);
float specularFactor = \

pow(max(dot(N, H), 0), materialShininess);
if (diffuseFactor <= 0) specularFactor = 0;
float3 specular = \

materialSpecular * \
lightSpecular * \
specularFactor;

// attenuation factor
float distanceLightVertex = \

length(P-lightPositionWorld.xyz);
float attenuationFactor = \

1 / (lightAttenuation.x + \
 distanceLightVertex*lightAttenuation.y + \
 distanceLightVertex*distanceLightVertex*\
 lightAttenuation.z);

// set output color
outColor.rgb = materialEmission + \

ambient + \
attenuationFactor * \
(diffuse + specular);

outColor.w = 1;
 }

15

Cg Example – Phong Shading

void main(float4 position : POSITION, // position in object coordinates
float3 normal : NORMAL, // normal

// user parameters
…

// output
out float4 outTexCoord0 : TEXCOORD0, // world normal
out float4 outTexCoord1 : TEXCOORD1, // world position
out float4 outTexCoord2 : TEXCOORD2, // world light position
out float4 outPosition : POSITION) // position in clip space

{
// transform position from object space to clip space
…
// transform normal into world space
…

// set world normal as out texture coordinate0
outTexCoord0 = normalWorld;
// set world position as out texture coordinate1
outTexCoord1 = positionWorld;
// world position of light
outTexCoord2 = mul(modelViewMatrix, float4(lightPosition,1));

}

vertex shader

16

Cg Example – Phong Shading

fragment shader

void main(float4 normal : TEXCOORD0, // normal
float4 position : TEXCOORD1, // position
float4 lightPosition : TEXCOORD2, // light position
out float4 outColor : COLOR)

{
// compute the ambient term
…

// compute the diffuse term
…

// compute the specular term
…

// attenuation factor
…

// set output color
outColor.rgb = materialEmission + ambient + attenuationFactor * (diffuse + specular);

}

17

GPGPU

• general purpose computation on the GPU
• in the past: access via shading languages

and rendering pipeline
• now: access via cuda interface in C

environment

18

GPGPU Applications

[courtesy NVIDIA]

19

Curves

20

Reading

• FCG Chap 15 Curves
• Ch 13 2nd edition

21

Parametric Curves
• parametric form for a line:

• x, y and z are each given by an equation that
involves:
• parameter t
• some user specified control points, x0 and x1

• this is an example of a parametric curve

10

10

10

)1(

)1(

)1(

zttzz

yttyy

xttxx

!+=

!+=

!+=

22

Splines

• a spline is a parametric curve defined by
control points
• term “spline” dates from engineering drawing,

where a spline was a piece of flexible wood
used to draw smooth curves

• control points are adjusted by the user to
control shape of curve

23

Splines - History
• draftsman used ‘ducks’ and

strips of wood (splines) to
draw curves

• wood splines have second-
order continuity, pass
through the control points a duck (weight)

ducks trace out curve

24

Hermite Spline

• hermite spline is curve for which user
provides:
• endpoints of curve
• parametric derivatives of curve at endpoints

• parametric derivatives are dx/dt, dy/dt, dz/dt

• more derivatives would be required for higher
order curves

25

Basis Functions
• a point on a Hermite curve is obtained by multiplying each

control point by some function and summing
• functions are called basis functions

26

Sample Hermite Curves

27

Bézier Curves

• similar to Hermite, but more intuitive
definition of endpoint derivatives

• four control points, two of which are knots

28

Bézier Curves

• derivative values of Bezier curve at knots
dependent on adjacent points

29

Bézier Blending Functions

• look at blending functions

• family of polynomials called
order-3 Bernstein polynomials
• C(3, k) tk (1-t)3-k; 0<= k <= 3
• all positive in interval [0,1]
• sum is equal to 1

30

Bézier Blending Functions

• every point on curve is linear
combination of control points

• weights of combination are all
positive

• sum of weights is 1
• therefore, curve is a convex

combination of the control
points

31

Bézier Curves

• curve will always remain within convex hull
(bounding region) defined by control
points

32

Bézier Curves
• interpolate between first, last control points
• 1st point’s tangent along line joining 1st, 2nd pts
• 4th point’s tangent along line joining 3rd, 4th pts

33

Comparing Hermite and Bézier
BézierHermite

34

Rendering Bezier Curves: Simple
• evaluate curve at fixed set of parameter values, join

points with straight lines
• advantage: very simple
• disadvantages:

• expensive to evaluate the curve at many points
• no easy way of knowing how fine to sample points,

and maybe sampling rate must be different along
curve

• no easy way to adapt: hard to measure deviation of
line segment from exact curve

35

Rendering Beziers: Subdivision

• a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

• suggests a rendering algorithm:
• keep breaking curve into sub-curves
• stop when control points of each sub-curve

are nearly collinear
• draw the control polygon: polygon formed by

control points

36

Sub-Dividing Bezier Curves
• step 1: find the midpoints of the lines joining

the original control vertices. call them M01,
M12, M23

P0

P1 P2

P3

M01

M12

M23

37

Sub-Dividing Bezier Curves
• step 2: find the midpoints of the lines joining

M01, M12 and M12, M23. call them M012, M123

P0

P1 P2

P3

M01

M12

M23

M012 M123

38

Sub-Dividing Bezier Curves
• step 3: find the midpoint of the line joining

M012, M123. call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

39

Sub-Dividing Bezier Curves
• curve P0, M01, M012, M0123 exactly follows original
from t=0 to t=0.5
• curve M0123 , M123 , M23, P3 exactly follows
original from t=0.5 to t=1

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123

40

Sub-Dividing Bezier Curves

P0

P1 P2

P3

• continue process to create smooth curve

41

de Casteljau’s Algorithm

• can find the point on a Bezier curve for any parameter
value t with similar algorithm
• for t=0.25, instead of taking midpoints take points 0.25 of

the way

P0

P1 P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm

42

Longer Curves
• a single cubic Bezier or Hermite curve can only capture a small class of curves

• at most 2 inflection points
• one solution is to raise the degree

• allows more control, at the expense of more control points and higher degree
polynomials

• control is not local, one control point influences entire curve
• better solution is to join pieces of cubic curve together into piecewise cubic

curves
• total curve can be broken into pieces, each of which is cubic
• local control: each control point only influences a limited part of the curve
• interaction and design is much easier

43

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

44

Continuity

• when two curves joined, typically want some
degree of continuity across knot boundary
• C0, “C-zero”, point-wise continuous, curves

share same point where they join
• C1, “C-one”, continuous derivatives
• C2, “C-two”, continuous second derivatives

45

Geometric Continuity
• derivative continuity is important for animation

• if object moves along curve with constant parametric
speed, should be no sudden jump at knots

• for other applications, tangent continuity suffices
• requires that the tangents point in the same direction
• referred to as G1 geometric continuity
• curves could be made C1 with a re-parameterization
• geometric version of C2 is G2, based on curves

having the same radius of curvature across the knot

46

Achieving Continuity

• Hermite curves
• user specifies derivatives, so C1 by sharing points and

derivatives across knot
• Bezier curves

• they interpolate endpoints, so C0 by sharing control pts
• introduce additional constraints to get C1

• parametric derivative is a constant multiple of vector joining
first/last 2 control points

• so C1 achieved by setting P0,3=P1,0=J, and making P0,2 and J and
P1,1 collinear, with J-P0,2=P1,1-J

• C2 comes from further constraints on P0,1 and P1,2

• leads to...

47

B-Spline Curve
• start with a sequence of control points
• select four from middle of sequence
 (pi-2, pi-1, pi, pi+1)

• Bezier and Hermite goes between pi-2 and pi+1

• B-Spline doesn’t interpolate (touch) any of them but
approximates the going through pi-1 and pi

P0

P1

P3

P2

P4 P5

P6

48

B-Spline

• by far the most popular spline used
• C0, C1, and C2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html

49

B-Spline

• locality of points

