University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Modern Hardware Il, Curves

Week 12, Wed Apr 7

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

» Extra TA office hours in lab 005 for P4/H4
» Wed 4/7 2-4, 5-7 (Shailen)
* Thu 4/8 3-5 (Kai)
* Fri 4/9 11-12, 2-4 (Garrett)
* Mon 4/12 11-1, 3-5 (Garrett)
» Tue 4/13 3:30-5 (Kai)
» Wed 4/14 2-4, 5-7 (Shailen)
* Thu 4/15 3-5 (Kai)
« Fri 4/16 11-4 (Garrett)

News

« please remember to fill out teaching
evaluation surveys at CoursEval site
https://eval.olt.ubc.ca/science

Review: Aliasing

* incorrect appearance of high frequencies as
low frequencies
« to avoid: antialiasing
* supersample
« sample at higher frequency
* low pass filtering
 remove high frequency function parts
« aka prefiltering, band-limiting

Review: Image As Signal

» 1D slice of raster image
« discrete sampling of 1D spatial signal
* theorem

« any signal can be represented as an (infinite)
sum of sine waves at different frequencies

A

s -

Intensity

Pixel position across scanline
Examples from Foley, van Dam, Feiner, and Hughes 5

Review: Sampling Theorem and Nyquist Rate

» Shannon Sampling Theorem
« continuous signal can be completely recovered from
its samples iff sampling rate greater than twice
maximum frequency present in signal
+ sample past Nyquist Rate to avoid aliasing

« twice the highest frequency component in the
image’s spectrum

Fig. 14.17 Sampling below the Nyquist rate. (Courtesy of George Wolberg, Colu
bia University.) 6

Review: Low-Pass Filtering

ANy
wﬂ b “MW'W"’

| Lowpass firing

Review: Rendering Pipeline

so far rendering pipeline as a specific set of stages

with fixed functionality

modern graphics hardware more flexible

» programmable “vertex shaders” replace several
geometry processing stages

» programmable “fragment/pixel shaders” replace
texture mapping stage

» hardware with these features now called Graphics
Processing Unit (GPU)

program shading hardware with assembly language

analog, or high level shading language

Review: Vertex Shaders

replace model/view transformation, lighting,
perspective projection
a little assembly-style program is executed on every
individual vertex independently
it sees:
vertex attributes that change per vertex:
« position, color, texture coordinates...
registers that are constant for all vertices (changes
are expensive):
« matrices, light position and color, ...
temporary registers
output registers for position, color, tex coords...

Review: Skinning Vertex Shader

* arm example:
* M1: matrix for upper arm
* M2: matrix for lower arm
Upper arm:

weight for M1=1
weight for M2=0

Lower arm:
weight for M1=0
weight for M2=1

Transition zone:
weight for M1 between 0..1
weight for M2 between 0..1 10

Review: Fragment Shaders

fragment shaders operate on fragments in place of
texturing hardware

- after rasterization

« before any fragment tests or blending
input: fragment, with screen position, depth, color,
and set of texture coordinates
access to textures, some constant data, registers
compute RGBA values for fragment, and depth

« can also kill a fragment (throw it away)

Modern Hardware

« finish up nice slides by Gordon Wetzstein
* lecture 23 from
* http://www.ugrad.cs.ubc.ca/~cs314/Vjan2009/
« slides, downloadable demos

1 12
9 P oo e D € EX D1ags
floatd positionObject = mul(objectMatrix, position); float3 V = normalize(viewerPositionWorld.xyz -\ vertex shader
. cstormorasyan .
. - " ragment shader
= Vertex Shader: animated teapot zanstorm normatnt world space | e e nomalest v vy oid mainl_fatépostion - POSITION, osiion n sbjoct coordintes g

void main(1 input floatd o float3 normal NORMAL, 1/ normal
1 user parameters float4 lightPositionWorld =\ materialSpecular *\ floatd. lightPosition : TEXCOORD2, Illight position
uniform floatdx4 objectMatrix, 11 object coordinate system matrix mul(modelViewMatrix, float4(lightPosition,)); :g:ﬁ:’:{‘r‘;'::m‘ 11 output outfloatd outColor COLOR)
unlform floatéxd objectMatrxlT, Il object coordinate system matrix Inverse transpose 1/ assume viewor poston s i origin g out flatd outTaxCoord0 : TEXCOORDA, ff workd noml ¢ 1/ compto the amblent term
uniform floatéxd modelViewMatrx, /| modelview matrix floaté viewerPositionWorld = loat4(0.0, 0., 0.0, 1.0); Il atenuation factor outfloatd outTexCoord : : /1 world position 11 comp
uniform floatéxé projectionMatrx, /1 projection matrix 11 apply deformation length(P-lightPositionWorld.xyz); ¢ 1l compute the diffuse term
Uniform floats lightPosition I ion peaton rameter positionObject.xyz = positionObject.xyz +\ float attenuationFactor =\ i transform position from object space to clip space .

orm floats lomacesiont 1 light amblont paramet deformation * normalize(normalObject.xyz); 1/ lightAttenuation.x +\

uniform float3 lightAttenuation, Ilight attenuation parameter - constant, linear, quadratic 11 two vectors g .
uniform float3 materialEmission, I/ material emission parameter float3 P = positionWorld.xyz; 1 set output color 11 sat world norma as out fexture coordinated Il attenuation factor
uniform floats materialAmbient, /| material ambient parameter float3 N = normalize(normalWorld.xyz); outColor.rgb = materlalEmission +\ outTexCoord0 = normalWorld; dnater -
uniform float3 materialDiffuse, 1l material diffuse parameter ambient +\ S:T sz :’:5‘ ton Bls m"” 9;;\"5 coordinate’ 1 set output col
(mBomm flost IateriaiShininess, material shininess parameter float3 ambient = materialAmbient*lightAmbient; (diffuse + specular); (ligl A }
1l output outColor.w = 1;) o
out floatd outPosition : POSITION, I/ position in clip space e e amPositiontWorld xyz -P)
out floatd outColor : COLOR) _ //out color T e oy o ™7

{ * lightDiffuse *

13 14 15 16

GPGPU

general purpose computation on the GPU
in the past: access via shading languages
and rendering pipeline

now: access via cuda interface in C
environment

GPGPU Applications

TS PhysX Mod Pock Using
cuph

SVIProAdanced 0Seismic | Glmmer: MulierelNDSon | GPU Prtela Tracking and

Anaysis theoey Mullud Simulations wth
Gretly Enhanced ox

{couriesy NVIDIA]

18

Curves

Reading

* FCG Chap 15 Curves
* Ch 13 2nd edition

Parametric Curves

parametric form for a line:

x=xpt+(1-0)x,

Y=yt +(1=0)y,

z=zyt+(1-1)z
X, y and z are each given by an equation that
involves:
* parameter t
* some user specified control points, x, and x,
this is an example of a parametric curve

Splines

* a spline is a parametric curve defined by
control points
« term “spline” dates from engineering drawing,
where a spline was a piece of flexible wood
used to draw smooth curves
« control points are adjusted by the user to
control shape of curve

Splines - History

« draftsman used ‘ducks’ and
strips of wood (splines) to
draw curves

» wood splines have second-
order continuity, pass
through the control points

a duck (welghl)

'/

‘;

ducks trace out curve

Hermite Spline

* hermite spline is curve for which user
provides:
« endpoints of curve
« parametric derivatives of curve at endpoints
» parametric derivatives are dx/dt, dy/dt, dz/dt

« more derivatives would be required for higher
order curves

Basis Functions

« apoint on a Hermite curve is obtained by multiplying each
control point by some function and summing
« functions are called basis functions

Sample Hermite Curves

Bézier Curves

* similar to Hermite, but more intuitive
definition of endpoint derivatives

« four control points, two of which are knots

)
Vp; Vp. Z/ //\".\\uppur/”
/
=1 - ”f\ vehora” P}
=0 b2 4 =1
P .
! Bézier /
Hermite Specification Specification

27

Bézier Curves

« derivative values of Bezier curve at knots
dependent on adjacent points

=3(p,-p)
=3(p,—p)

Bézier Blending Functions

* look at blending functions

T
a-o |[r
« family of polynomials called !
order-3 Bernstein polynomials 3t(1-1| | py
© C(3, k) tk (1t 0<=k <=3 p®)=

+ all positive in interval [0,1] 3A=-0 | ps

» sumis equal to 1 3
t Py

Bézier Blending Functions

every point on curve is linear

corwalnatlon of clontltol points ‘ 9 Bezier Blending /
+ weights of combination are all " Functions /
positive W /
+ sum of weights is 1 os /

therefore, curve is a convex
combination of the control e
points o

Bézier Curves

« curve will always remain within convex hull
(bounding region) defined by control
pointe N

31

Bézier Curves
* interpolate between first, last control points

+ 15t point’s tangent along line joining 1st, 2nd pts
+ 4t point’s tangent along line j 10|n|ng 31, 4th pts

@

Comparing Hermite and Bézier
Hermite Bézier

Rendering Bezier Curves: Simple

+ evaluate curve at fixed set of parameter values, join
points with straight lines
advantage: very simple °
disadvantages:
« expensive to evaluate the curve at many points
+ no easy way of knowing how fine to sample points,
and maybe sampling rate must be different along
curve
* no easy way to adapt: hard to measure deviation of
line segment from exact curve

Rendering Beziers: Subdivision

* a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

* suggests a rendering algorithm:

« keep breaking curve into sub-curves

« stop when control points of each sub-curve
are nearly collinear

« draw the control polygon: polygon formed by
control points

35

Sub-Dividing Bezier Curves

« step 1: find the midpoints of the lines joining
the original control vertices. call them M,,,
M12! M23

P, N P,

Sub-Dividing Bezier Curves

+ step 2: find the midpoints of the lines joining
My, My, and M,,, M. call them My, M;,5

P, M, P,

Sub-Dividing Bezier Curves

+ step 3: find the midpoint of the line joining
Mo12, My25. call it My,

P1 M]Z PZ

P, P,

Sub-Dividing Bezier Curves

= curve Py, My;, My, My;,3 exactly follows original
from =0 to =0.5

« curve My ,3, Myp3, Mys, P exactly follows
original from ¢t=0.5 to t=1

Sub-Dividing Bezier Curves

= continue process to create smooth curve

P, P,

de Casteljau’s Algorithm

« can find the point on a Bezier curve for any parameter
value t with similar algorithm
« for t=0.25, instead of taking midpoints take points 0.25 of
the way

demo: www.saltire.com/z

s/advanced_geometry/spline/spline.htm a1

Longer Curves

a single cubic Bezier or Hermite curve can only capture a small class of curves
+ at most 2 inflection points
one solution is to raise the degree
« allows more control, at the expense of more control points and higher degree
polynomials
« control is not local, one control point influences entire curve
better solution is to join pieces of cubic curve together into piecewise cubic
curves
« total curve can be broken into pieces, each of which is cubic
« local control: each control point only influences a limited part of the curve
« interaction and design is much easier

Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html

43

Continuity

* when two curves joined, typically want some
degree of continuity across knot boundary
= CO0, “C-zero”, point-wise continuous, curves
share same point where they join
« C1, “C-one”, continuous derivatives
» C2, “C-two”, continuous second derivatives

C, continuity .

Co & C; continuity Co & C; & C; continuity

Geometric Continuity

« derivative continuity is important for animation
- if object moves along curve with constant parametric
speed, should be no sudden jump at knots
- for other applications, tangent continuity suffices
« requires that the tangents point in the same direction
- referred to as G’ geometric continuity
« curves could be made C’ with a re-parameterization

+ geometric version of C?is G2, based on curves
having the same radius of curvature across the knot

Achieving Continuity

 Hermite curves
- user specifies derivatives, so C’ by sharing points and
derivatives across knot
« Bezier curves
- they interpolate endpoints, so C? by sharing control pts
- introduce additional constraints to get C’
« parametric derivative is a constant multiple of vector joining
first/last 2 control points
+ so C' achieved by setting P, ;=P; ,=J, and making P, , and J and
P, ; collinear, with J-P,, ,=P; ;-J
+ C2 comes from further constraints on P, and P, ,

* leads to...

B-Spline Curve

- start with a sequence of control points
« select four from middle of sequence
(Pizs Pits Py Piat)
« Bezier and Hermite goes between p,, and p;,4
« B-Spline doesn't interpolate (touch) any of them but
approximates the going through p, ; and p;

P o2 o Ps
N\

P3 [) [}
P, ° P, Ps

B-Spline

* by far the most popular spline used
» Cy, C4, and C, continuous

N
Y

demo: www.siggraph.org/edt Vmaterials/HyperGraph/modeling/splines!, [curve.html
a8

B-Spline

* locality of points

<
‘

Local modification of a B-spline curve. Changing one of the control points in (a) prod
curve (b), which is modified only in the neighborhood of the altered control point.

