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News

• Extra TA office hours in lab 005 for P4/H4
• Wed 4/7 2-4, 5-7 (Shailen)
• Thu 4/8 3-5 (Kai)
• Fri 4/9 11-12, 2-4 (Garrett)
• Mon 4/12 11-1, 3-5 (Garrett)
• Tue 4/13 3:30-5 (Kai)
• Wed 4/14 2-4, 5-7 (Shailen)
• Thu 4/15 3-5 (Kai)
• Fri 4/16 11-4 (Garrett)
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News

• please remember to fill out teaching
evaluation surveys at CoursEval site
https://eval.olt.ubc.ca/science
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Review: Aliasing

• incorrect appearance of high frequencies as
low frequencies

• to avoid: antialiasing
• supersample

• sample at higher frequency
• low pass filtering

• remove high frequency function parts
• aka prefiltering, band-limiting
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Review: Image As Signal

• 1D slice of raster image
• discrete sampling of 1D spatial signal

• theorem
• any signal can be represented as an (infinite)

sum of sine waves at different frequencies

Examples from Foley, van Dam, Feiner, and Hughes
Pixel position across scanline
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Review: Sampling Theorem and Nyquist Rate

• Shannon Sampling Theorem
• continuous signal can be completely recovered from

its samples iff sampling rate greater than twice
maximum frequency present in signal

• sample past Nyquist Rate to avoid aliasing
• twice the highest frequency component in the

image’s spectrum
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Review: Low-Pass Filtering
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Review: Rendering Pipeline
• so far rendering pipeline as a specific set of stages

with fixed functionality
• modern graphics hardware more flexible

• programmable “vertex shaders” replace several
geometry processing stages

• programmable “fragment/pixel shaders”  replace
texture mapping stage

• hardware with these features now called Graphics
Processing Unit (GPU)

• program shading hardware with assembly language
analog, or high level shading language
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Review: Vertex Shaders
• replace model/view transformation, lighting,

perspective projection
• a little assembly-style program is executed on every

individual vertex independently
• it sees:

• vertex attributes that change per vertex:
• position, color, texture coordinates…

• registers that are constant for all vertices (changes
are expensive):

• matrices, light position and color, …
• temporary registers
• output registers for position, color, tex coords…
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Review: Skinning Vertex Shader

• arm example:
• M1: matrix for upper arm
• M2: matrix for lower arm

Upper arm:Upper arm:
weight for M1=1weight for M1=1
weight for M2=0weight for M2=0

Lower arm:Lower arm:
weight for M1=0weight for M1=0
weight for M2=1weight for M2=1

Transition zone:Transition zone:
weight for M1 between 0..1weight for M1 between 0..1
weight for M2 between 0..1weight for M2 between 0..1 11

Review: Fragment Shaders
• fragment shaders operate on fragments in place of

texturing hardware
• after rasterization
• before any fragment tests or blending

• input: fragment, with screen position, depth, color,
and set of texture coordinates

• access to textures, some constant data, registers
• compute RGBA values for fragment, and depth

• can also kill a fragment (throw it away)
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Modern Hardware

• finish up nice slides by Gordon Wetzstein
• lecture 23 from
• http://www.ugrad.cs.ubc.ca/~cs314/Vjan2009/

• slides, downloadable demos
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Cg Example – Vertex Shader

• Vertex Shader: animated teapot
void main( // input

float4 position : POSITION, // position in object coordinates
float3 normal : NORMAL, // normal

// user parameters
uniform float4x4  objectMatrix, // object coordinate system matrix
uniform float4x4 objectMatrixIT, // object coordinate system matrix inverse transpose
uniform float4x4 modelViewMatrix, // modelview matrix
uniform float4x4 modelViewMatrixIT, // modelview matrix inverse transpose
uniform float4x4 projectionMatrix, // projection matrix
uniform float  deformation, // deformation parameter
uniform float3 lightPosition, // light position
uniform float3 lightAmbient, // light ambient parameter
uniform float3 lightDiffuse, // light diffuse parameter
uniform float3 lightSpecular, // light specular parameter
uniform float3 lightAttenuation, // light attenuation parameter - constant, linear, quadratic
uniform float3 materialEmission, // material emission parameter
uniform float3 materialAmbient, // material ambient parameter
uniform float3 materialDiffuse, // material diffuse parameter
uniform float3 materialSpecular, // material specular parameter
uniform float  materialShininess, // material shininess parameter

// output
out float4 outPosition : POSITION, // position in clip space
out float4 outColor : COLOR ) // out color

{
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Cg Example – Vertex Shader
// transform position from object space to clip space
float4 positionObject = mul(objectMatrix, position);

// transform normal into world space
float4 normalObject = mul(objectMatrixIT, float4(normal,1));
float4 normalWorld  = mul(modelViewMatrixIT, normalObject);

// world position of light
float4 lightPositionWorld = \

mul(modelViewMatrix, float4(lightPosition,1));

// assume viewer position is in origin
float4 viewerPositionWorld = float4(0.0, 0.0, 0.0, 1.0);

// apply deformation
positionObject.xyz    = positionObject.xyz + \

deformation * normalize(normalObject.xyz);
float4 positionWorld = mul(modelViewMatrix, positionObject);
outPosition               = mul(projectionMatrix, positionWorld);

// two vectors
float3 P = positionWorld.xyz;
float3 N = normalize(normalWorld.xyz);

// compute the ambient term
float3 ambient = materialAmbient*lightAmbient;

// compute the diffuse term
float3 L = normalize(lightPositionWorld.xyz - P);
float   diffuseFactor = max(dot(N, L), 0);
float3 diffuse = materialDiffuse * lightDiffuse * diffuseFactor;

// compute the specular term
float3 V = normalize( viewerPositionWorld.xyz - \

  positionWorld.xyz);
float3 H = normalize(L + V);
float specularFactor = \

pow(max(dot(N, H), 0), materialShininess);
if (diffuseFactor <= 0) specularFactor = 0;
float3 specular = \

materialSpecular * \
lightSpecular * \
specularFactor;

// attenuation factor
float distanceLightVertex = \

length(P-lightPositionWorld.xyz);
float attenuationFactor = \

1 / ( lightAttenuation.x + \
      distanceLightVertex*lightAttenuation.y + \
      distanceLightVertex*distanceLightVertex*\
      lightAttenuation.z ); 

// set output color
outColor.rgb = materialEmission + \

ambient + \
attenuationFactor * \
( diffuse + specular );

outColor.w = 1;
      }
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Cg Example – Phong Shading

void main( float4 position : POSITION, // position in object coordinates
float3 normal : NORMAL, // normal

// user parameters
…

// output
out float4 outTexCoord0 : TEXCOORD0,  // world normal
out float4 outTexCoord1 : TEXCOORD1,  // world position
out float4 outTexCoord2 : TEXCOORD2,  // world light position
out float4 outPosition : POSITION)       // position in clip space

{
// transform position from object space to clip space
…
// transform normal into world space
…

// set world normal as out texture coordinate0
outTexCoord0 = normalWorld;
// set world position as out texture coordinate1
outTexCoord1 = positionWorld;
// world position of light
outTexCoord2 = mul(modelViewMatrix, float4(lightPosition,1));

}

vertex shader

16

Cg Example – Phong Shading

fragment shader

void main( float4 normal            : TEXCOORD0, // normal
float4 position          : TEXCOORD1, // position
float4 lightPosition  : TEXCOORD2, // light position
out float4 outColor         : COLOR )

{
// compute the ambient term
…

// compute the diffuse term
…

// compute the specular term
…

// attenuation factor
…

// set output color
outColor.rgb = materialEmission + ambient + attenuationFactor * (diffuse + specular);

}
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GPGPU

• general purpose computation on the GPU
• in the past: access via shading languages

and rendering pipeline
• now: access via cuda interface in C

environment
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GPGPU Applications

[courtesy NVIDIA]
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Curves
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Reading

• FCG Chap 15 Curves
• Ch 13 2nd edition

21

Parametric Curves
• parametric form for a line:

• x, y and z are each given by an equation that
involves:
• parameter t
• some user specified control points, x0 and x1

• this is an example of a parametric curve

10
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Splines

• a spline is a parametric curve defined by
control points
• term “spline” dates from engineering drawing,

where a spline was a piece of flexible wood
used to draw smooth curves

• control points are adjusted by the user to
control shape of curve
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Splines - History
• draftsman used ‘ducks’ and

strips of wood (splines) to
draw curves

• wood splines have second-
order continuity, pass
through the control points a duck (weight)

ducks trace out curve
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Hermite Spline

• hermite spline is curve for which user
provides:
• endpoints of curve
• parametric derivatives of curve at endpoints

•  parametric derivatives are dx/dt, dy/dt, dz/dt

• more derivatives would be required for higher
order curves
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Basis Functions
• a point on a Hermite curve is obtained by multiplying each

control point by some function and summing
• functions are called basis functions
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Sample Hermite Curves
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Bézier Curves

• similar to Hermite, but more intuitive
definition of endpoint derivatives

• four control points, two of which are knots
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Bézier Curves

• derivative values of Bezier curve at knots
dependent on adjacent points
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Bézier Blending Functions

• look at blending functions

• family of polynomials called
order-3 Bernstein polynomials
• C(3, k) tk (1-t)3-k; 0<= k <= 3
• all positive in interval [0,1]
• sum is equal to 1
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Bézier Blending Functions

• every point on curve is linear
combination of control points

• weights of combination are all
positive

• sum of weights is 1
• therefore, curve is a convex

combination of the control
points
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Bézier Curves

• curve will always remain within convex hull
(bounding region) defined by control
points
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Bézier Curves
• interpolate between first, last control points
• 1st point’s tangent along line joining 1st, 2nd pts
• 4th  point’s tangent along line joining 3rd, 4th pts
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Comparing Hermite and Bézier
BézierHermite
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Rendering Bezier Curves: Simple
• evaluate curve at fixed set of parameter values, join

points with straight lines
• advantage: very simple
• disadvantages:

• expensive to evaluate the curve at many points
• no easy way of knowing how fine to sample points,

and maybe sampling rate must be different along
curve

• no easy way to adapt: hard to measure deviation of
line segment from exact curve
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Rendering Beziers: Subdivision

• a cubic Bezier curve can be broken into two
shorter cubic Bezier curves that exactly cover
original curve

• suggests a rendering algorithm:
• keep breaking curve into sub-curves
• stop when control points of each sub-curve

are nearly collinear
• draw the control polygon: polygon formed by

control points
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Sub-Dividing Bezier Curves
• step 1: find the midpoints of the lines joining

the original control vertices. call them M01,
M12, M23

P0

P1 P2

P3

M01

M12

M23
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Sub-Dividing Bezier Curves
• step 2: find the midpoints of the lines joining

M01, M12 and M12, M23. call them M012, M123

P0

P1 P2

P3

M01

M12

M23

M012 M123
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Sub-Dividing Bezier Curves
• step 3: find the midpoint of the line joining

M012, M123. call it M0123

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123
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Sub-Dividing Bezier Curves
• curve P0, M01, M012, M0123 exactly follows original
from t=0 to t=0.5
• curve M0123 , M123 , M23, P3 exactly follows
original from t=0.5 to t=1

P0

P1 P2

P3

M01

M12

M23

M012 M123
M0123
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Sub-Dividing Bezier Curves

P0

P1 P2

P3

• continue process to create smooth curve
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de Casteljau’s Algorithm

• can find the point on a Bezier curve for any parameter
value t with similar algorithm
• for t=0.25, instead of taking midpoints take points 0.25 of

the way

P0

P1 P2

P3

M01

M12

M23

t=0.25

demo: www.saltire.com/applets/advanced_geometry/spline/spline.htm 42

Longer Curves
• a single cubic Bezier or Hermite curve can only capture a small class of curves

• at most 2 inflection points
• one solution is to raise the degree

• allows more control, at the expense of more control points and higher degree
polynomials

• control is not local, one control point influences entire curve
• better solution is to join pieces of cubic curve together into piecewise cubic

curves
• total curve can be broken into pieces, each of which is cubic
• local control: each control point only influences a limited part of the curve
• interaction and design is much easier
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Piecewise Bezier: Continuity Problems

demo: www.cs.princeton.edu/~min/cs426/jar/bezier.html
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Continuity

• when two curves joined, typically want some
degree of continuity across knot boundary
• C0, “C-zero”, point-wise continuous, curves

share same point where they join
• C1, “C-one”, continuous derivatives
• C2, “C-two”, continuous second derivatives
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Geometric Continuity
• derivative continuity is important for animation

• if object moves along curve with constant parametric
speed, should be no sudden jump at knots

• for other applications, tangent continuity suffices
• requires that the tangents point in the same direction
• referred to as G1 geometric continuity
• curves could be made C1 with a re-parameterization
• geometric version of C2 is G2, based on curves

having the same radius of curvature across the knot
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Achieving Continuity

• Hermite curves
• user specifies derivatives, so C1 by sharing points and

derivatives across knot
• Bezier curves

• they interpolate endpoints, so C0 by sharing control pts
• introduce additional constraints to get C1

• parametric derivative is a constant multiple of vector joining
first/last 2 control points

• so C1 achieved by setting P0,3=P1,0=J, and making P0,2 and J and
P1,1 collinear, with J-P0,2=P1,1-J

• C2 comes from further constraints on P0,1 and P1,2

• leads to...
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B-Spline Curve
• start with a sequence of control points
• select four from middle of sequence
  (pi-2, pi-1, pi, pi+1)

• Bezier and Hermite goes between pi-2 and pi+1

• B-Spline doesn’t interpolate (touch) any of them but
approximates the going through pi-1 and pi

P0

P1

P3

P2

P4 P5

P6
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B-Spline

• by far the most popular spline used
• C0, C1, and C2 continuous

demo: www.siggraph.org/education/materials/HyperGraph/modeling/splines/demoprog/curve.html
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B-Spline

• locality of points


