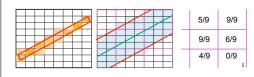


University of British Columbia **CPSC 314 Computer Graphics** Jan-Apr 2010

Tamara Munzner


Antialiasing II

Week 11, Wed Mar 31

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Review: Supersample and Average

- · supersample: create image at higher resolution e.g. 768x768 instead of 256x256
- shade pixels wrt area covered by thick line/rectangle
- average across many pixels
- e.g. 3x3 small pixel block to find value for 1 big pixel · rough approximation divides each pixel into a finer grid of pixels

Image As Signal

- image as spatial signal
- 2D raster image
- discrete sampling of 2D spatial signal
- 1D slice of raster image
- · discrete sampling of 1D spatial signal

Aliasing

- · incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
 - supersample
 - sample at higher frequency
- low pass filtering
 - · remove high frequency function parts
 - aka prefiltering, band-limiting

News

 P4 proposals due now · don't wait for feedback from me to start! you'll only hear from me if there's a problem

Supersample and Average

Sampling Frequency • if don't sample often enough, resulting signal

misinterpreted as lower-frequency one

Nyquist rate.

Low-Pass Filtering

equal areas cause equal intensity, regardless of distance from

5/9

9/9 6/9

4/9

9/9

0/9

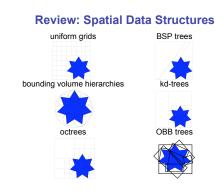
· supersample: jaggies less obvious, but still there

· small pixel center check still misses information

unweighted area sampling

pixel center to area

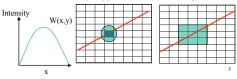
aka box filter


W(x,y)

· we call this aliasing

Fig. 14.17 Sampling below the

Intensity


 typo on P4 writeup • it's worth 15% of grade not 18%

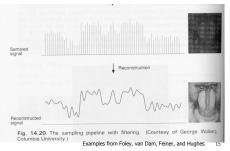
Weighted Area Sampling

- intuitively, pixel cut through the center should be more heavily weighted than one cut along corner
- weighting function, W(x,y) · specifies the contribution of primitive passing through the point (x, y) from pixel center

Gaussian filter (or approximation) commonly used

Sampling Theorem

continuous signal can be completely recovered from its samples


iff

2

sampling rate greater than twice maximum frequency present in signal

- Claude Shannon

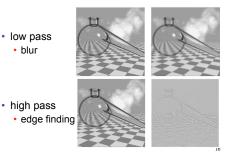
Low-Pass Filtering

Review: Aliasing

- · incorrect appearance of high frequencies as low frequencies
- to avoid: antialiasing
- supersample
 - sample at higher frequency
- · low pass filtering · remove high frequency function parts aka prefiltering, band-limiting

Sampling Errors

- some objects missed entirely, others poorly sampled · could try unweighted or weighted area sampling
- but how can we be sure we show everything? need to think about entire class of solutions!
- brief taste of signal processing (Chap 4 FCG)


•	•	•	•			•	•
•	Q	•	٥ſ	•	0	0	•
•	0	•		•		9	•
•	0	•	ø	•	0	þ	0
•	•	•	þ	•	•	þ	•
•	•	•	0	•	•	0	0
•	•	.	•	0	•	•	0
•	0	•		•		•	•
<u> </u>	•	•	•	•	•	9	9

Nyquist Rate

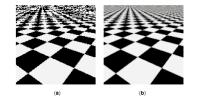
- lower bound on sampling rate
- · twice the highest frequency component in the image's spectrum

 $\Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda \Lambda$ $f_S < 2f$ $f_{c} > 2f$

Filtering

Original signal

Low-pass filtered signal



Examples from Foley, van Dam, Feiner, and Hughes 10

11

Texture Antialiasing

• texture mipmapping: low pass filter

17

Temporal Antialiasing

- subtle point: collision detection about algorithms for finding collisions in time as much as space
- temporal sampling
 aliasing: can miss collision completely with point

samples! \mathbf{O} . · temporal antialiasing

· test line segment representing motion of object center

C

18

Modern Hardware

- use nice slides by Gordon Wetzstein
 lecture 23 from
 - http://www.ugrad.cs.ubc.ca/~cs314/Vjan2009/

19

slides, downloadable demos