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News

• P3 demos started today
• signup sheet posted if you need to check time

• P4 proposals due Wed 1pm
• give me hardcopy in class, not in box
• electronic also ok, 'handin proj4.prop'
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Review: Language-Based Generation

• L-Systems
• F: forward, R: right, L: left
• Koch snowflake:

F = FLFRRFLF
• Mariano’s Bush:

 F=FF-[-F+F+F]+[+F-F-F]
• angle 16

                                                                                                      

http://spanky.triumf.ca/www/fractint/lsys/plants.html
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Review: Fractal Terrain

• 1D: midpoint displacement
• divide in half, randomly displace
• scale variance by half

• 2D: diamond-square
• generate new value at midpoint
• average corner values + random displacement

• scale variance by half each time

http://www.gameprogrammer.com/fractal.html
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Review: Particle Systems

• changeable/fluid stuff
• fire, steam, smoke, water, grass, hair, dust,

waterfalls, fireworks, explosions, flocks
• life cycle

• generation, dynamics, death
• rendering tricks

• avoid hidden surface computations
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Review: Collision Detection
• boundary check

• perimeter of world vs. viewpoint or objects
• 2D/3D absolute coordinates for bounds
• simple point in space for viewpoint/objects

• set of fixed barriers
• walls in maze game

• 2D/3D absolute coordinate system
• set of moveable objects

• one object against set of items
• missile vs. several tanks

• multiple objects against each other
• punching game: arms and legs of players
• room of bouncing balls
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Review: Trade-off in Choosing Proxies

         increasing complexity & tightness of fit

   decreasing cost of (overlap tests + proxy update)

AABB OBBSphere Convex Hull6-dop

• AABB: axis aligned bounding box
• OBB: oriented bounding box, arbitrary alignment
• k-dops – shapes bounded by planes at fixed orientations

• discrete orientation polytope
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Pair Reduction
• want proxy for any moving object requiring collision

detection
• before pair of objects tested in any detail, quickly test if

proxies intersect
• when lots of moving objects, even this quick bounding

sphere test can take too long: N2 times if there are N objects
• reducing this N2 problem is called pair reduction
• pair testing isn’t a big issue until N>50 or so…
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Spatial Data Structures

• can only hit something that is close
• spatial data structures tell you what is close

to object
• uniform grid, octrees, kd-trees, BSP trees
• bounding volume hierarchies

• OBB trees
• for player-wall problem, typically use same

spatial data structure as for rendering
• BSP trees most common
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Uniform Grids
• axis-aligned
• divide space uniformly
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Quadtrees/Octrees
• axis-aligned
• subdivide until no points in cell
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KD Trees
• axis-aligned
• subdivide in alternating dimensions
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BSP Trees

• planes at arbitrary orientation
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Bounding Volume Hierarchies
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OBB Trees
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Related Reading

• Real-Time Rendering
• Tomas Moller and Eric Haines
• on reserve in CICSR reading room
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Acknowledgement

• slides borrow heavily from
• Stephen Chenney, (UWisc CS679)
• http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.ppt

• slides borrow lightly from
• Steve Rotenberg, (UCSD CSE169)
• http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt
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Antialiasing
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Reading for Antialiasing

• FCG Sec 8.3 Simple Antialiasing
• 2nd ed: 3.7

• FCG Sec 13.4.1 Antialiasing
• 2nd ed: 10.11.1

• FCG Chap 9 Signal Processing (optional)
• 2nd ed: Chap 4 (optional)
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Samples

• most things in the real world are continuous
• everything in a computer is discrete
• the process of mapping a continuous function to a discrete

one is called sampling
• the process of mapping a discrete function to a continuous

one is called reconstruction
• the process of mapping a continuous variable to a discrete

one is called quantization
• rendering an image requires sampling and quantization
• displaying an image involves reconstruction
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Jaggy Line Segments

• we tried to sample a line segment so it would
map to a 2D raster display

• we quantized the pixel values to 0 or 1
• we saw stairsteps / jaggies
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Less Jaggy Line Segments

• better if quantize to many shades
• image is less visibly jaggy

• find color for area, not just single point at
center of pixel
• supersampling: sample at higher frequency

than intended display size
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Supersample and Average
• supersample: create image at higher resolution

• e.g. 768x768 instead of 256x256
• shade pixels wrt area covered by thick line/rectangle

• average across many pixels
• e.g.  3x3 small pixel block to find value for 1 big pixel
• rough approximation divides each pixel into a finer grid of pixels

6/99/9

5/9 9/9

0/94/9
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Supersample and Average
• supersample: jaggies less obvious, but still there

• small pixel center check still misses information
• unweighted area sampling

• equal areas cause equal intensity, regardless of distance from
pixel center to area

• aka box filter

6/99/9

5/9 9/9

0/94/9
x

Intensity
W(x,y)
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Supersampling Example: Image

no supersampling 3x3 supersampling with
3x3 unweighted filter
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Weighted Area Sampling
• intuitively, pixel cut through the center should be

more heavily weighted than one cut along corner
• weighting function, W(x,y)

• specifies the contribution of primitive passing through
the point (x, y) from pixel center

• Gaussian filter (or approximation) commonly used

x

Intensity
W(x,y)
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• some objects missed entirely, others poorly sampled
• could try unweighted or weighted area sampling
• but how can we be sure we show everything?

• need to think about entire class of solutions!
• brief taste of signal processing (Chap 4 FCG)

Sampling Errors
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Image As Signal

• image as spatial signal
• 2D raster image

•  discrete sampling of 2D spatial signal
• 1D slice of raster image

• discrete sampling of 1D spatial signal

Examples from Foley, van Dam, Feiner, and Hughes
Pixel position across scanline

In
te

ns
ity
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Sampling Frequency

• if don’t sample often enough, resulting signal
misinterpreted as lower-frequency one
• we call this aliasing

Examples from Foley, van Dam, Feiner, and Hughes
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Sampling Theorem

continuous signal can be completely recovered
from its samples
iff
sampling rate greater than twice maximum
frequency present in signal

- Claude Shannon
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Nyquist Rate

• lower bound on sampling rate
• twice the highest frequency component in the

image’s spectrum
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Aliasing

• incorrect appearance of high frequencies as
low frequencies

• to avoid: antialiasing
• supersample

• sample at higher frequency
• low pass filtering

• remove high frequency function parts
• aka prefiltering, band-limiting
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Low-Pass Filtering

Examples from Foley, van Dam, Feiner, and Hughes
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Low-Pass Filtering

Examples from Foley, van Dam, Feiner, and Hughes
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Filtering

• low pass
• blur

• high pass
• edge finding
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Texture Antialiasing

• texture mipmapping: low pass filter
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Temporal Antialiasing
• subtle point: collision detection about algorithms for

finding collisions in time as much as space
• temporal sampling

• aliasing: can miss collision completely with point
samples!

• temporal antialiasing
• test line segment representing motion of object

center


