

University of British Columbia **CPSC 314 Computer Graphics** Jan-Apr 2010

Tamara Munzner

Procedural II, Collision

Week 10, Fri Mar 26

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

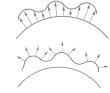
- · Today office hours slight shift
- Kai 2:30-5
- my office hours cancelled, I'm sick and will lurch home right after teaching
- Thu 10-11 lab moved, now Thu 1-2 rest of term signup sheet for P3 grading for last time today
- or send email to dingkai AT cs · by 48 hours after the due date or you'll lose marks
- P3 due today 5pm

Readings

- Procedural:
- FCG Sect 17.6 Procedural Techniques
- 17.7 Groups of Objects
- (16.6, 16.7 2nd ed)
- Collision:
- FCG Sect 12.3 Spatial Data Structures • (10.9 2nd edition)

Review: Bump Mapping: Normals As Texture

- · create illusion of complex geometry model
- control shape effect by locally perturbing surface normal

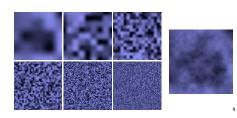


3

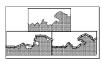
7

11

15


Review: Environment Mapping

- · cheap way to achieve reflective effect
- generate image of surrounding
- · map to object as texture
- sphere mapping: texture is distorted fisheve view • point camera at mirrored sphere
- · use spherical texture coordinates


Review: Perlin Noise

· coherency: smooth not abrupt changes · turbulence: multiple feature sizes

Self-Similarity

· infinite nesting of structure on all scales

6 planar textures, sides of cube point camera outwards to 6 faces

Review: Cube Environment Mapping

 use largest magnitude of vector to pick face other two coordinates for (s,t) texel location

Review: Generating Coherent Noise

- just three main ideas
- nice interpolation

• $D = \log(N)/\log(r)$

coastline of Britain

· use vector offsets to make grid irregular

Fractal Dimension

N = measure, r = subdivision scale

Hausdorff dimension: noninteger
 Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html 14

D = log(N)/log(r) D = log(4)/log(3) = 1.26

- optimization
 - sneaky use of 1D arrays instead of 2D/3D one

10

Review: Volumetric Texture

Review: Procedural Modeling

· nonprocedural: explicitly stored in memory

Language-Based Generation

- · define texture pattern over 3D domain - 3D space containing the object
 - texture function can be digitized or procedural for each point on object
- compute texture from point location in space
- 3D function $\rho(x, y, z)$

textures, geometry

procedural approach

 not load from disk often less memory cost visual richness adaptable precision noise, fractals, particle systems

· compute something on the fly

· L-Systems: after Lindenmayer

. F: forward, R: right, L: left

F=FF-[-F+F+F]+[+F-F-F] }

Mariano's Bush:

angle 16

Koch snowflake: F :- FLFRRFLF

Review: Perlin Noise: Procedural Textures function marble (point) x = point.x + turbulence(point);

return marble color(sin(x))

Fractal Landscapes

- fractals: not just for "showing math"
 - triangle subdivision vertex displacement

 - · recursive until termination condition

10

http://www.fractal-landscapes.co.uk/images.html

1D: Midpoint Displacement

- divide in half
- randomly displace
- scale variance by half

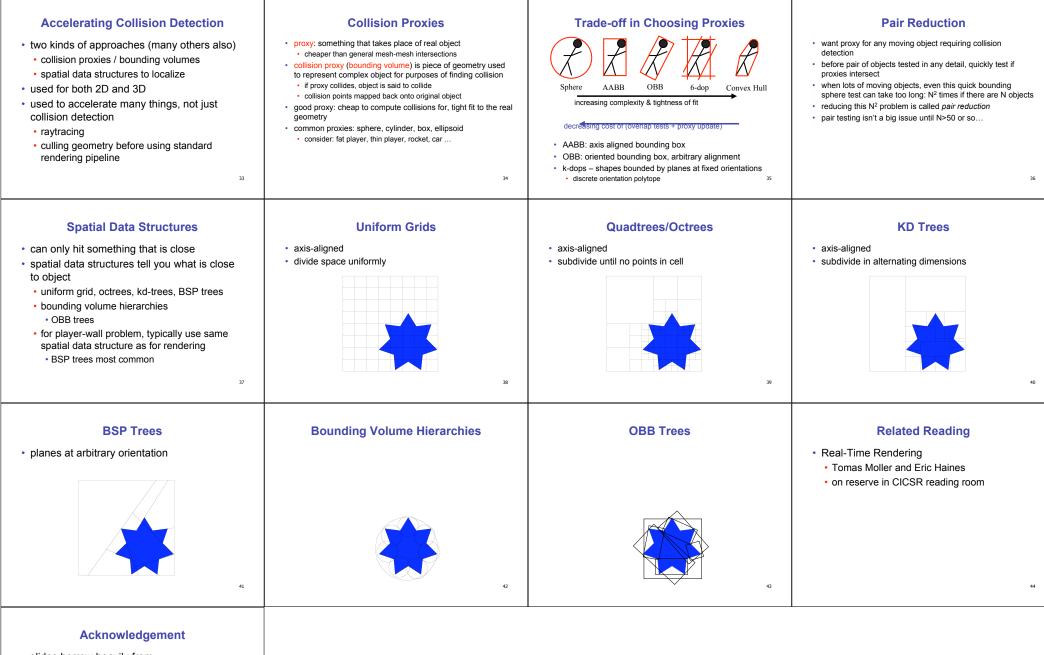
13

http://spanky.triumf.ca/www/fractint/lsvs/plants.html

2D: Diamond-Square

- fractal terrain with diamond-square approach · generate a new value at midpoint
- average corner values + random displacement
- scale variance by half each time

Particle Systems


- · loosely defined
- modeling, or rendering, or animation
- · key criteria
- · collection of particles
- random element controls attributes position, velocity (speed and direction), color, lifetime, age, shape, size, transparency • predefined stochastic limits: bounds, variance,

- **Particle System Examples** · objects changing fluidly over time
- · fire, steam, smoke, water
- objects fluid in form grass, hair, dust
- physical processes
- waterfalls, fireworks, explosions
- group dynamics: behavioral · birds/bats flock, fish school,
 - human crowd, dinosaur/elephant stampede

Particle Systems Demos

- general particle systems • http://www.wondertouch.com
- boids: bird-like objects
 - http://www.red3d.com/cwr/boids/

17	type of distribution	19	20
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	 Particle System Rendering expensive to render thousands of particles implify: avoid hidden surface calculations each particle has small graphical primitive (blob) pite color: sum of all particles mapping to it importal anti-aliasing (motion blur) immally expensive: supersampling over time position, velocity known for each particle just render as streak 	 Procedural Approaches Summary Perlin noise fractals L-systems particle systems not at all a complete list! big subject: entire classes on this alone 	Collision/Acceleration
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>
<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header>	 Example: Player-Wall Collisions first person games must prevent the player from walking through walls and other obstacles most general case: player and walls are polygonal meshes each frame, player moves along path not known in advance assume piecewise linear: straight steps on each frame. assume player's motion could be fast 	 Stupid Algorithm on each step, do a general mesh-to-mesh intersection test to find out if the player intersects the wall if they do, refuse to allow the player to move problems with this approach? how can we improve: in response? 	 Collision Response fustrating to just stop for player motions, often best thing to do is move player tangentially to obstacle ot recursively to ensure all collisions caught find ime and place of collision adjust velocity of player repeat with new velocity, start time, start position (reduced time interval) handling multiple contacts at same time find a direction that is tangential to all contacts

- slides borrow heavily from
- Stephen Chenney, (UWisc CS679)
 http://www.cs.wisc.edu/~schenney/courses/cs679-f2003/lectures/cs679-22.

45

- slides borrow lightly from
- Steve Rotenberg, (UCSD CSE169)
- http://graphics.ucsd.edu/courses/cse169_w05/CSE169_17.ppt