
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Textures III

Week 10, Wed Mar 24

2

News

• signup sheet for P3 grading
• Mon/today/Fri signups in class
• or send email to dingkai AT cs

• by 48 hours after the due date or you'll lose
marks

• (P4 went out Monday)

3

Review: Basic OpenGL Texturing
• setup

• generate identifier: glGenTextures
• load image data: glTexImage2D
• set texture parameters (tile/clamp/...): glTexParameteri
• set texture drawing mode (modulate/replace/...): glTexEnvf

• drawing
• enable: glEnable
• bind specific texture: glBindTexture
• specify texture coordinates before each vertex: glTexCoord2f

4

Review: Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

5

Review: MIPmapping
• image pyramid, precompute averaged versions

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

6

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)
• reflected color (environment mapping)

7

Bump Mapping: Normals As Texture
• object surface often not smooth – to recreate correctly

need complex geometry model
• can control shape “effect” by locally perturbing surface

normal
• random perturbation
• directional change over region

8

Bump Mapping

9

Bump Mapping

10

Embossing

• at transitions
• rotate point’s surface normal by θ or - θ

11

Displacement Mapping
• bump mapping gets

silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

12

Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding
• map to object as texture

13

Environment Mapping
• used to model object that reflects

surrounding textures to the eye
• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

• others possible too

14

Sphere Mapping
• texture is distorted fish-eye view

• point camera at mirrored sphere
• spherical texture mapping creates texture coordinates that

correctly index into this texture map

15

Cube Mapping

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing

out from origin

16

Cube Mapping

A

B
C

E

F

D

17

Cube Mapping
• direction of reflection vector r selects the face of the cube to

be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates (normalized by the 3rd coordinate)
selects the pixel from the face.

• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces

18

Volumetric Texture
• define texture pattern over 3D

domain - 3D space containing
the object
• texture function can be

digitized or procedural
• for each point on object

compute texture from point
location in space

• common for natural
material/irregular textures
(stone, wood,etc…)

19

Volumetric Bump Mapping

Marble

Bump

20

Volumetric Texture Principles

• 3D function ρ(x,y,z)
• texture space – 3D space that holds the

texture (discrete or continuous)
• rendering: for each rendered point P(x,y,z)

compute ρ(x,y,z)
• volumetric texture mapping function/space

transformed with objects

21

Procedural Approaches

22

Procedural Textures

• generate “image” on the fly, instead of
loading from disk
• often saves space
• allows arbitrary level of detail

23

Procedural Texture Effects: Bombing

• randomly drop bombs of various shapes, sizes and
orientation into texture space (store data in table)
• for point P search table and determine if inside shape

• if so, color by shape
• otherwise, color by objects color

24

Procedural Texture Effects

• simple marble

function boring_marble(point)
x = point.x;
return marble_color(sin(x));
// marble_color maps scalars to colors

25

Perlin Noise: Procedural Textures

• several good explanations
• FCG Section 10.1
• http://www.noisemachine.com/talk1
• http://freespace.virgin.net/hugo.elias/models/m_perlin.htm
• http://www.robo-murito.net/code/perlin-noise-math-faq.html

http://mrl.nyu.edu/~perlin/planet/

26

Perlin Noise: Coherency

• smooth not abrupt changes

 coherent white noise

27

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

28

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

29

Perlin Noise: Turbulence

• multiple feature sizes
• add scaled copies of noise

function turbulence(p)
t = 0; scale = 1;
while (scale > pixelsize) {

t +=
abs(Noise(p/scale)*scale);

scale/=2;
} return t;

30

Generating Coherent Noise

• just three main ideas
• nice interpolation
• use vector offsets to make grid irregular
• optimization

• sneaky use of 1D arrays instead of 2D/3D one

31

Interpolating Textures

• nearest neighbor
• bilinear
• hermite

32

Vector Offsets From Grid

• weighted average of gradients
• random unit vectors

33

Optimization
• save memory and time
• conceptually:

• 2D or 3D grid
• populate with random number generator

• actually:
• precompute two 1D arrays of size n (typical size 256)

• random unit vectors
• permutation of integers 0 to n-1

• lookup
• g(i, j, k) = G[(i + P[(j + P[k]) mod n]) mod n]

34

Perlin Marble
• use turbulence, which in turn uses noise:

function marble(point)
x = point.x + turbulence(point);
return marble_color(sin(x))

35

Procedural Modeling
• textures, geometry

• nonprocedural: explicitly stored in memory

• procedural approach
• compute something on the fly
• often less memory cost
• visual richness

• fractals, particle systems, noise

36

Fractal Landscapes

• fractals: not just for “showing math”
• triangle subdivision
• vertex displacement
• recursive until termination condition

http://www.fractal-landscapes.co.uk/images.html

37

Self-Similarity

• infinite nesting of structure on all scales

38

Fractal Dimension
• D = log(N)/log(r)

N = measure, r = subdivision scale
• Hausdorff dimension: noninteger

D = log(N)/log(r) D = log(4)/log(3) = 1.26

coastline of Britain

Koch snowflake

http://www.vanderbilt.edu/AnS/psychology/cogsci/chaos/workshop/Fractals.html

39

Language-Based Generation

• L-Systems: after Lindenmayer
• Koch snowflake: F :- FLFRRFLF

• F: forward, R: right, L: left

• Mariano’s Bush:
 F=FF-[-F+F+F]+[+F-F-F] }
• angle 16

http://spanky.triumf.ca/www/fractint/lsys/plants.html

40

1D: Midpoint Displacement

• divide in half
• randomly displace
• scale variance by half

http://www.gameprogrammer.com/fractal.html

41

2D: Diamond-Square
• fractal terrain with diamond-square approach

• generate a new value at midpoint
• average corner values + random displacement
• scale variance by half each time

42

Particle Systems
• loosely defined

• modeling, or rendering, or animation
• key criteria

• collection of particles
• random element controls attributes

• position, velocity (speed and direction), color,
lifetime, age, shape, size, transparency

• predefined stochastic limits: bounds, variance,
type of distribution

43

Particle System Examples
• objects changing fluidly over time

• fire, steam, smoke, water
• objects fluid in form

• grass, hair, dust
• physical processes

• waterfalls, fireworks, explosions
• group dynamics: behavioral

• birds/bats flock, fish school,
human crowd, dinosaur/elephant stampede

44

Particle Systems Demos

• general particle systems
• http://www.wondertouch.com

• boids: bird-like objects
• http://www.red3d.com/cwr/boids/

45

Particle Life Cycle
• generation

• randomly within “fuzzy” location
• initial attribute values: random or fixed

• dynamics
• attributes of each particle may vary over time

• color darker as particle cools off after explosion
• can also depend on other attributes

• position: previous particle position + velocity + time

• death
• age and lifetime for each particle (in frames)
• or if out of bounds, too dark to see, etc

46

Particle System Rendering
• expensive to render thousands of particles
• simplify: avoid hidden surface calculations

• each particle has small graphical primitive
(blob)

• pixel color: sum of all particles mapping to it
• some effects easy

• temporal anti-aliasing (motion blur)
• normally expensive: supersampling over time
• position, velocity known for each particle
• just render as streak

47

Procedural Approaches Summary

• Perlin noise
• fractals
• L-systems
• particle systems

• not at all a complete list!
• big subject: entire classes on this alone

