
University of British Columbia
CPSC 314 Computer Graphics

Jan-Apr 2010

Tamara Munzner

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

Textures II

Week 10, Mon Mar 22

2

News
• signup sheet for P3 grading

• today/Wed/Fri signups in class
• or send email to dingkai AT cs

• by 48 hours after the due date or you'll lose marks

• again: extra TA office hours in lab for Q&A
• Mon 10-1, Tue 12:30-3:30 (Garrett)
• Tue 3:30-5, Wed 2-5 (Kai)
• Thu 12-3:30 (Shailen)
• Fri 2-4 (Kai)

3

Review: Texture Coordinates
• texture image: 2D array of color values (texels)
• assigning texture coordinates (s,t) at vertex with

object coordinates (x,y,z,w)
• use interpolated (s,t) for texel lookup at each pixel
• use value to modify a polygon’s color

• or other surface property
• specified by programmer or artist glTexCoord2f(s,t)

glVertexf(x,y,z,w)

4

glTexCoord2d(1, 1);
glVertex3d (x, y, z);

(1,0)

(0,0) (0,1)

(1,1)

Review: Tiled Texture Map

glTexCoord2d(4, 4);
glVertex3d (x, y, z);

(4,4)

(0,4)

(4,0)

(0,0)

5

Review: Fractional Texture Coordinates

(0,0) (1,0)

(0,1) (1,1)

(0,0) (.25,0)

(0,.5) (.25,.5)

texture
image

6

Review: Texture
• action when s or t is outside [0…1] interval

• tiling
• clamping

• functions
• replace/decal
• modulate
• blend

• texture matrix stack
glMatrixMode(GL_TEXTURE);

7

Textures II

8

Texture Pipeline

Texel color

(0.9,0.8,0.7)

(x, y, z)

Object position

(-2.3, 7.1, 17.7)

(s, t)

Parameter space

(0.32, 0.29)

Texel space

(81, 74)

(s’, t’)

Transformed
parameter space

(0.52, 0.49)

Final color

(0.45,0.4,0.35)

Object color

(0.5,0.5,0.5)

9

Texture Objects and Binding
• texture object

• an OpenGL data type that keeps textures resident in memory and
provides identifiers to easily access them

• provides efficiency gains over having to repeatedly load and reload a
texture

• you can prioritize textures to keep in memory
• OpenGL uses least recently used (LRU) if no priority is assigned

• texture binding
• which texture to use right now
• switch between preloaded textures

10

Basic OpenGL Texturing
• create a texture object and fill it with texture data:

• glGenTextures(num, &indices) to get identifiers for the objects
• glBindTexture(GL_TEXTURE_2D, identifier) to bind

• following texture commands refer to the bound texture
• glTexParameteri(GL_TEXTURE_2D, …, …) to specify

parameters for use when applying the texture
• glTexImage2D(GL_TEXTURE_2D, ….) to specify the texture data

(the image itself)
• enable texturing: glEnable(GL_TEXTURE_2D)
• state how the texture will be used:

• glTexEnvf(…)
• specify texture coordinates for the polygon:

• use glTexCoord2f(s,t) before each vertex:
• glTexCoord2f(0,0); glVertex3f(x,y,z);

11

Low-Level Details
• large range of functions for controlling layout of texture data

• state how the data in your image is arranged
• e.g.: glPixelStorei(GL_UNPACK_ALIGNMENT, 1) tells

OpenGL not to skip bytes at the end of a row
• you must state how you want the texture to be put in memory:

how many bits per “pixel”, which channels,…
• textures must be square and size a power of 2

• common sizes are 32x32, 64x64, 256x256
• smaller uses less memory, and there is a finite amount of

texture memory on graphics cards
• ok to use texture template sample code for project 4

• http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=09

12

Texture Mapping

• texture coordinates
• specified at vertices

glTexCoord2f(s,t);
glVertexf(x,y,z);

• interpolated across triangle (like R,G,B,Z)
• …well not quite!

13

Texture Mapping

• texture coordinate interpolation
• perspective foreshortening problem

14

Interpolation: Screen vs. World Space

• screen space interpolation incorrect
• problem ignored with shading, but artifacts

more visible with texturing

P1(x,y,z)

V0(x’,y’)

V1(x’,y’)

P0(x,y,z)

15

Texture Coordinate Interpolation
• perspective correct interpolation

• α, β, γ :
• barycentric coordinates of a point P in a triangle

• s0, s1, s2 :
• texture coordinates of vertices

• w0, w1,w2 :
• homogeneous coordinates of vertices

(s1,t1)

(s0,t0)

(s2,t2)

(x1,y1,z1,w1)

(x0,y0,z0,w0)

(x2,y2,z2,w2)

(α,β,γ)
(s,t)?

16

Reconstruction

(image courtesy of (image courtesy of Kiriakos KutulakosKiriakos Kutulakos, U Rochester), U Rochester)

17

Reconstruction

• how to deal with:
• pixels that are much larger than texels?

• apply filtering, “averaging”

• pixels that are much smaller than texels ?
• interpolate

18

MIPmapping

Without MIP-mappingWithout MIP-mapping

With MIP-mappingWith MIP-mapping

use use ““image pyramidimage pyramid”” to to precomputeprecompute
averaged versions of the textureaveraged versions of the texture

store whole pyramid instore whole pyramid in
single block of memorysingle block of memory

19

MIPmaps
• multum in parvo -- many things in a small place

• prespecify a series of prefiltered texture maps of decreasing
resolutions

• requires more texture storage
• avoid shimmering and flashing as objects move

• gluBuild2DMipmaps

• automatically constructs a family of textures from original
texture size down to 1x1

without with

20

MIPmap storage

• only 1/3 more space required

21

Texture Parameters

• in addition to color can control other
material/object properties
• surface normal (bump mapping)
• reflected color (environment mapping)

22

Bump Mapping: Normals As Texture
• object surface often not smooth – to recreate correctly

need complex geometry model
• can control shape “effect” by locally perturbing surface

normal
• random perturbation
• directional change over region

23

Bump Mapping

24

Bump Mapping

25

Embossing

• at transitions
• rotate point’s surface normal by θ or - θ

26

Displacement Mapping
• bump mapping gets

silhouettes wrong
• shadows wrong too

• change surface
geometry instead
• only recently

available with
realtime graphics

• need to subdivide
surface

27

Environment Mapping

• cheap way to achieve reflective effect
• generate image of surrounding
• map to object as texture

28

Environment Mapping
• used to model object that reflects

surrounding textures to the eye
• movie example: cyborg in Terminator 2

• different approaches
• sphere, cube most popular

• OpenGL support
• GL_SPHERE_MAP, GL_CUBE_MAP

• others possible too

29

Sphere Mapping
• texture is distorted fish-eye view

• point camera at mirrored sphere
• spherical texture mapping creates texture coordinates that

correctly index into this texture map

30

Cube Mapping

• 6 planar textures, sides of cube
• point camera in 6 different directions, facing

out from origin

31

Cube Mapping

A

B
C

E

F

D

32

Cube Mapping
• direction of reflection vector r selects the face of the cube to

be indexed
• co-ordinate with largest magnitude

• e.g., the vector (-0.2, 0.5, -0.84) selects the –Z face

• remaining two coordinates (normalized by the 3rd coordinate)
selects the pixel from the face.

• e.g., (-0.2, 0.5) gets mapped to (0.38, 0.80).

• difficulty in interpolating across faces

33

Volumetric Texture
• define texture pattern over 3D

domain - 3D space containing
the object
• texture function can be

digitized or procedural
• for each point on object

compute texture from point
location in space

• common for natural
material/irregular textures
(stone, wood,etc…)

34

Volumetric Bump Mapping

Marble

Bump

35

Volumetric Texture Principles

• 3D function ρ(x,y,z)
• texture space – 3D space that holds the

texture (discrete or continuous)
• rendering: for each rendered point P(x,y,z)

compute ρ(x,y,z)
• volumetric texture mapping function/space

transformed with objects

