University of British Columbia
CPSC 314 Computer Graphics
Jan-Apr 2010

Tamara Munzner

Math Review

Week 1, Wed Jan 6

http://www.ugrad.cs.ubc.ca/~cs314/Vjan2010

News

* no class this Friday (Jan 8)!
« UBC CS Dept news

How to Prepare for the Tech
Career Fair

Date: Wed. Jan 6
Time: 5-6:30 pm
Location: DMP 110

Resume Writing Workshop (for
non-coop students)

Date: Thurs. Jan 7
Time: 12:30 - 2 pm
Location: DMP 201

CSSS Movie Night

Date: Thurs. Jan 7
Time: 6—-10 pm
Location: DMP 310

Movies: “Up” & “The Hangover”
(Free Popcorn & Pop)

Drop-In Resume Edition Session
Date: Mon. Jan 11

Time: 11am -2 pm
Location: Rm 255, ICICS/CS Bldg

Industry Panel

Speakers: Managers from Google,
IBM, Microsoft, TELUS, etc.

Date: Tues. Jan 12

Time: Panel: 5:15 - 6:15 pm;
Networking: 6:15 - 7:15 pm

Location: Panel: DMP 110;
Networking: X-wing Undergrad
Lounge

Tech Career Fair

Date: Wed. Jan 13
Time: 10 am - 4 pm
Location: = SUB Ballroom 3

Review: Computer Graphics Defined

e CG uses

* movies, games, art/design, ads, VR,
visualization

» CG state of the art
» photorealism achievable (in some cases)

| —

http://www.alias.com/eng/etc/fakeorfoto/quiz.html 4

Review: Rendering Capabilities

_ - "
at ===V ak 2 -

HyperGraph/shutbug.htm

www.siggraph.org/education/materials/

Today’s Readings

* FCG Chapter 2: Miscellaneous Math
« except 2.7 (2.11 in 2nd edition)

 FCG Chapter 5: Linear Algebra
» except 5.4 (not in 2nd edition)

Notation: Scalars, Vectors, Matrices

 scalar a
* (lower case, italic)

* vector a =[a1 a, .. an]
* (lower case, bold)

* matrix]
* (upper case, bold) a,, d,, a4,

A=la, a, ay

Vectors

 arrow: length and direction
* oriented segment in nD space

 offset / displacement

* location if given origin

Column vs. Row Vectors

crowvectors a =la a, .. a]
4,
* column vectors
a,
acol =
a}’l

Vector-Vector Addition

 add: vector + vector = vector

* parallelogram rule
- tail to head, complete the triangle

geometric

examples:

algebraic
u, +v,

u+v=|u,+v,

Z/l3 +V3

(3,2)+(6,4) =(9,6)
(2,5,1)+(3.,1,-1) =(5,6,0)

10

Vector-Vector Subtraction

* subtract: vector - vector = vector

u-v=|u,-v,

v (3,2) - (6,4) = (=3,-2)
(2,5.1)=(3,1,-1) = (-1,4,2)

u —v

_l/l3 — Vs _

11

Vector-Vector Subtraction

* subtract: vector - vector = vector

u-v=|u,-v,

v (3,2) - (6,4) = (=3,-2)
(2,5.1)=(3,1,-1) = (-1,4,2)

u+(-v)

argument reversal

u —v

_l/l3 — Vs _

Scalar-Vector Multiplication

* multiply: scalar * vector = vector
» vector is scaled

“““ a*u=(a*u,a*u,,a*u,)

2%(3,2) = (6,4)
5%(2,5,1) = (1,2.5,.5)

13

Vector-Vector Multiplication

* multiply: vector * vector = scalar
* dot product, aka inner product uev

U, 1*|v, =(”1*V1)+(u2*"2)+(”3*v3)

14

Vector-Vector Multiplication

* multiply: vector * vector = scalar
* dot product, aka inner product uev

(“1 g)"' (u2 *V,)"' (u3 >X<"3)

15

Vector-Vector Multiplication

* multiply: vector * vector = scalar
 dot product, aka inner product uev

i, | * vy | = (o, % v,) + (% v,) + (0, % v,)

o | uevs= HuHHVH cosO
« geometric interpretation

- lengths, angles u
- can find angle between two 0
vectors v

16

Dot Product Geometry

 can find length of projection of u onto v

wevple b
uev 0 |
\Y%

uH cosf = —s
‘VH ‘uHcosH

- as lines become perpendicular, u®v — ()

VA S

Dot Product Example

= (1, %v,) + (uy % v,) + (uy #v;)

=(6*D)+(1*7)+(2*3)=6+7+6=19

18

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector
 cross product U, v, U,v, — UV,

- algebraic _

Us | V3] |WiVa T UV

19

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector
 cross product u, v, U,v, — UV,

algebraic @» 4@ UV, — UV,
< P<
0’ 4% UV, W)V

20

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector
* cross product 3

U,vy —uUsv,
* algebraic
2 u\v, —u,v,

blah blah 21

Vector-Vector Multiplication, The Sequel

* multiply: vector * vector = vector

 cross product u, v, U, v, —U,V,
- algebraic _
: 7} 1% uv, —u,v
* geometric 3 3 172 7271
. {} axb
faxbl| = |uf[[v]sin6
. abu parallelogram I
area b
* axb perpendicular \
to parallelogram
~
a
22

RHS vs. LHS Coordinate Systems

* right-handed coordinate system convention

ZA right hand rule:
index finger x, second finger y;
V<> right thumb points up
Yy X

Z=XXY

* |left-handed coordinate system

left hand rule:
index finger x, second finger y;
left thumb points down

Z=XXY

23

Basis Vectors

- take any two vectors that are linearly
iIndependent (nonzero and nonparallel)

e can use linear combination of these to define
any other vector:

c=wa+wb

24

Orthonormal Basis Vectors

* if basis vectors are orthonormal (orthogonal
(mutually perpendicular) and unit length)

» we have Cartesian coordinate system
 familiar Pythagorean definition of distance
A

orthonormal algebraic properties y

r o

=[] =1.

X
X0y=0 .—2"_,‘.0,5Y
/O.Sy
2X

Ix

25

Basis Vectors and Origins

* coordinate system: just basis vectors
 can only specify offset: vectors

» coordinate frame: basis vectors and origin
* can specify location as well as offset: points

P =0+xi+)]

26

Working with Frames

P =0+xi+)]

F

27

Working with Frames

P =0+xi+)]

I:1 P = (3!'1)

28

Working with Frames

i
or.

i

P =0+xi+)]

F

P = (3!'1)

29

Working with Frames

P =0+xi+)]

21 Fy p=(3,-1)

F,

30

Working with Frames

P =0+xi+)]

I:1 P = (3!'1)
F2 P= ('15!2)

31

Working with Frames

P =0+xi+)]

_ Fzﬁ I:1 P = (3!'1)

F2 P= ('1 5!2)

32

Working with Frames

P =0+xi+)]

F1 Pp= (3!'1)
F2 P= ('1 5!2)
F3

33

Working with Frames

P =0+xi+)]

I:1 P = (3!'1)
F2 P= ('15!2)
F3 P = (1!2)

34

Working with Frames

y P =0+xi+)]
° F1 ay
ofi | |/
_E V] Feop=(EA)
- [0 /|
] 2o p=E(1.5.2)
o F: p=(1,2)

35

Named Coordinate Frames

- origin and basis vectors P =0+ax+by +cz

 pick canonical frame of reference
 then don’t have to store origin, basis vectors
* just p=(a,b,c)

* convention: Cartesian orthonormal one on
previous slide

* handy to specify others as needed
- airplane nose, looking over your shoulder, ...

* really common ones given names in CG
* object, world, camera, screen, ...

36

Lines

* slope-intercept form
cy=mx+Db

* implicit form
cy—mx—-Db=0
cAx+By+C=0
* f(x,y) =0

f(x,y)=y-mx-b

m = -b/a

37

Implicit Functions

 find where function is O
* plug in (X,y), check if
* 0: on line
* < (0:Inside
* > (: outside
* analogy: terrain
» sea level: =0

« altitude: function value

» topo map: equal-value
contours (level sets)

38

Implicit Circles

fp)=(x=x) +(y=-y) -+

» circle is points (x,y) where f(x,y) =0

p=(xy)c=(x,y):(P-c)*(p-¢)-r =0

* points p on circle have property that vector
from ¢ to p dotted with itself has value r?

p—df—r2=0

* points points p on the circle have property
that squared distance from c to p is r?

p—d‘—r=0

* points p on circle are those a distance r from
center point ¢ 39

Parametric Curves

» parameter: index that changes continuously

* (X,y): point on curve
* 1. parameter
* vector form

* p=J@)

0

y

g(1)

o)

40

p(?) =p, +1(P, —Py)
p(¢)=0+1(d)

start at point p,
go towards p,,
according to parametert

* p(0) = pg, P(1) = py

X

Y.

2D Parametric Lines

-xo + t(x, — X,)-

Yo+ Y = Yo)

Linear Interpolation

« parametric line is example of general concept
* p(t) =Py +1(p, —P,)
* interpolation

* p goes throughaatt=0
* p goes through b att=1

* linear
« weights t, (1-f) are linear polynomials in t

42

Matrix-Matrix Addition

 add: matrix + matrix = matrix

m,

My,

m,

My,

* example

1
2

3-
4

7

5 5
1

n, n, +mg

Ny | |y Ty,

1+(-2) 3+35]
2+7 4+1

Ny + 1My, |

n, +m,

1]

9 5

43

Scalar-Matrix Multiplication

* multiply: scalar * matrix = matrix

m,

My,

m,

2 B
a mg,

My,

* example

1

54

S
a®m,

3%2 3*4

8

3*1 3*5

o -
am,,

kK
a®my |

44

Matrix-Matrix Multiplication

 can only multiply (n,k) by (k,m):
number of left cols = number of right rows

* legal h 0]
a b ¢
j ok
e f g
_ - Nl m
* undefined - -
a b c] .
7 h i
e
g ik
o p q|]

Matrix-Matrix Multiplication

* row by column

n, P

My | M1| M| [Pu

P
P |

46

Matrix-Matrix Multiplication

* row by column
m, m,||[n,

my, My |1y,

n,

My, |

P D

) P |

P =myn, +m,n,y,

Pr =My Ny + My,N,,

47

Matrix-Matrix Multiplication

* row by column
Pu | P2
P P

48

Matrix-Matrix Multiplication

* row by column
P2
P2

49

Matrix-Matrix Multiplication

* row by column
P P
P | P

P11 = My iy + My hy,

Pa1 = My 1y + My,
Pia = Myl +Myyhy,
P = Myl + My,

« honcommutative: AB '= BA

Matrix-Vector Multiplication

* points as column vectors: postmultiply

-
my mpy, My

'

My My My
!
“ msy, Mms, My,
!
h My, My, Ny,

[x' y' z h']=[x y z h:

X
Y
z

h

p'=Mp

51

Matrices

WA

¢ tranSpOSe my, m, ny; my my,
my My My My, _ m,
My My, Wiy My my,
My My, My My, my,

* Identity

* inverse AA' =1
* not all matrices are invertible

52

Matrices and Linear Systems

* linear system of n equations, n unknowns
3x+7y+2z=4

2x -4y -3z=-1
Sx+2y+z=1

* matrix form Ax=b

3 7 2 0x] [4]
2 -4 -3
5 2 1 ||z 1

Il
I
[

Readings for Next Time

* Mon Jan 11
* RB Chap Introduction to OpenGL

* RB Chap State Management and Drawing Geometric
Obijects

* RB App Basics of GLUT (Auxinv 1.1)

 RB = Red Book = OpenGL Programming Guide

54

Re-Reminder

* no class this Friday (Jan 8)!

55

