

Course News Assignment 3 (project) Due April 1 Demos in labs April 2-7 Reading Chapter 10 (ray tracing), except 10.8-10.10 Chapter 14 (global illumination)

Course Topics for the Rest of the Term

Ray-tracing & Global Illumination

This week

Parametric Curves/Surfaces

- March 30/April 1
- Taught by Robert Bridson I will be at a conference

Overview of current research

April 3/6 (Ivo Ihrke – I am still at conference)

April 8 - Final Q&A (I will be back for that)

Wolfgang Heidrich

Area Light Sources

So far:

- All lights were either point-shaped or directional
 - Both for ray-tracing and the rendering pipeline
- Thus, at every point, we only need to compute lighting formula and shadowing for ONE light direction

In reality:

- All lights have a finite area
- Instead of just dealing with one direction, we now have to integrate over all directions that go to the light source

Integrating over Light Source

Rewrite the integration

Instead of integrating over directions

$$I_{\textit{reflected}} = \int_{\substack{\textit{light} \\ \textit{directions}}} \rho(\omega) \cdot V(\omega) \cdot I_{\textit{light}}(\omega) \cdot d\omega$$

we can integrate over points on the light source

$$I_{reflected}(q) = \int_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{light}(p) \cdot ds \cdot dt$$

where q: point on reflecting surface, p= F(s,t) is a point on the area light

- We are integrating over p
- Denominator: quadratic falloffl

Integration

Problem:

- Except for the simplest of scenes, either integral is not solvable analytically!
- This is mostly due to the visibility term, which could be arbitrarily complex depending on the scene

So:

- Use numerical integration
- Effectively: approximate the light with a whole number of point lights

Monte Carlo Integration

Formally:

Approximate integral with finite sum
$$I_{reflected}(q) = \int_{s,t} \frac{\rho(p-q) \cdot V(p-q)}{|p-q|^2} \cdot I_{light}(p) \cdot ds \cdot dt$$

$$\approx \frac{A}{N} \sum_{i=1}^{N} \frac{\rho(p_i-q) \cdot V(p_i-q)}{|p_i-q|^2} \cdot I_{light}(p_i)$$

where

- The p_i are randomly chosen on the light source
 - With equal probability!
- A is the total area of the light

Alia the number of complex (rough

Sampling

Sample directions vs. sample light source

- Most directions do not correspond to points on the light source
 - Thus, variance will be higher than sampling light Images by Matt Pharr

Monte Carlo Integration

Note:

- This approach of approximating lighting integrals with sums over randomly chosen points is much more flexible than this!
- In particular, it can be used for global illumination
 - Light bouncing off multiple surfaces before hitting the eye

Wolfgang Heidrich

Global Illumination

So far:

- Have considered only light directly coming form the light sources
 - As well as mirror reflections, refraction

In reality:

- Light bouncing off diffuse and/or glossy surfaces also illuminates other surfaces
 - This is called global illumination

Rendering Equation

Equation guiding global illumination:

$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} \rho(x,\omega_i,\omega_0) L_i(\omega_i) d\omega_i$$
$$= L_e(x,\omega_o) + \int_{\Omega} \rho(x,\omega_i,\omega_0) L_o(R(x,\omega_i),-\omega_i) d\omega_i$$

Where

- ρ is the reflectance from ω_i to ω_0 at point x
- L₀ is the outgoing (I.e. reflected) radiance at point x in direction ω_i
 - Radiance is a specific physical quantity describing the amount of light along a ray
 - Radiance is constant along a ray
- L_e is the emitted radiance (=0 unless point x is on a light source)
- R is the "ray-tracing function". It describes what point is Woofgang Heidrich

Rendering Equation

Equation guiding global illumination:
$$L_o(x,\omega_o) = L_e(x,\omega_o) + \int_{\Omega} \rho(x,\omega_i,\omega_0) L_i(\omega_i) d\omega_i$$
$$= L_e(x,\omega_o) + \int_{\Omega} \rho(x,\omega_i,\omega_0) L_o(R(x,\omega_i),-\omega_i) d\omega_i$$

Note:

- The rendering equation is an integral equation
- This equation cannot be solved directly
 - Ray-tracing function is complicated!
 - Similar to the problem we had computing illumination from area light sources!

Monte Carlo Path Tracing

In practice:

- Do not branch at every intersection point
 - This would have exponential complexity in the ray depth!
- Instead:
 - Shoot some number of primary rays through the pixel (10s-1000s, depending on scene!)
 - For each pixel and each intersection point, make a single, random decision in which direction to go next

How to Sample?

Simple sampling strategy:

- At every point, choose between all possible reflection directions with equal probability
- This will produce very high variance/noise if the materials are specular or glossy
- Lots of rays are required to reduce noise!

Better strategy: importance sampling

- Focus rays in areas where most of the reflected light contribution will be found
- For example: if the surface is a mirror, then only light from the mirror direction will contribute!
- Glossy materials: prefer rays near the mirror

olfgang Heidrich

How to Sample?

Images by Veach & Guibas

How to Sample?

Sampling strategies are still an active research area!

- Recent years have seen drastic advances in performance
- Lots of excellent sampling strategies have been developed in statistics and machine learning
 - Many are useful for graphics

Wolfgang Heidrich

How to Sample?

Objective:

- Compute light transport in scenes using stochastic ray tracing
 - Monte Carlo, Sequential Monte Carlo
 - Metropolis

[Burke, Ghosh, Heidrich '05] [Ghosh, Heidrich '06], [Ghosh, Doucet, Heidrich '06]

More on Global Illumination This was a (very) quick overview More details in CPSC 514 (Computer Graphics: Rendering) Next offered in January 2010

Coming Up

Monday/Wednesday:

Curves & surfaces (Robert Bridson)

Friday:

Overview of current research topics (Ivo Ihrke)

Monday (April 6):

Research demos (Ivo & my PhD students)