© Wolfgang Heidrich

* DueApril 1
Demos in labs April 2-7

. Chébter 10 (ray tracing), except 10.8-10.10
+ Chapter 14 (global illumination)

Wolfgang Heidrich

Course Topics
for the Rest of the Term

Ray-tracing & Global lllumination

This week

Parametric Curves/Surfaces
March 30/April 1
Taught by Robert Bridson - | will be at a conference

Overview of current research
April 3/6 (Ivo Ihrke — | am still at conference)

April 8 - Final Q&A (I will be back for that)

Wolfgang Heidrich

Ray-Tracing

Basic Algorithm (Whithead):
for every pixel p; {

Generate ray r from camera position through pixel p;
p;= background color
for every object o in scene {

1f(r intersects o && intersection is closer than
previously found intersections)

Compute lighting at intersection point, using local
normal and matenal properties; store result in p;

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

Ray-Tracing =
Shadows

Approach:

To test whether point is in shadow, send out
shadow rays to all light sources

If ray hits another object the point lies in shadow

Wolfgang Heidrich

Ray-Tracing
Reflections/Refractions

Approach:

Send rays out in reflected and refracted direction to
gather incoming light
That light is multiplied by local surface color and

Fresnel term, and added to result of local shading

Wolfgang Heidrich

Recursive Ray Tracing
Ray tracing can handle

Reflection (chrome)
Refraction (glass)
Shadows

Spawn secondary rays
Reflection, refraction

If another object is hit,

recurse to find its color projection
reference

Shadow point

Cast ray from intersection
point to light source, check if
intersects another object

pixel positions
on projection
plane

Wolfgang Heidrich

Recursive Ray-Tracing

Ray Whitted, 1980

Recursive Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,0bj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,0bj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end; Wolfgang Heidrich

Recursive Ray-Tracing
What rays need to be traced?

Materials with diffuse/Phong reflection component:

Shadow rays to each light source (binary
visibility only)

Materials with mirror reflection component:
—~ Reflection ray (i.e. recursion)
Materials with transmissive component:
Refraction ray (recursion)

In practice, materials can have any
combination of the above components

Wolfgang Heidrich

Algorithm Termination Criteria

Termination criteria
No intersection
Reach maximal depth
Number of bounces

Contribution of secondary ray attenuated below
threshold

Each reflection/refraction attenuates ray

Wolfgang Heidrich

Reflection
Mirror effects 6|6

Perfect specular reflection

Wolfgang Heidrich

Refraction d n

Happens at interface between 0,
transparent object and
surrounding medium

E.qg. glass/air boundary t

Snell’'s Law

¢, sinf, =c, sin0,

Light ray bends based on
refractive indices c4, ¢,

Wolfgang Heidrich

Total Internal Reflection

As the angle of incidence increases from 0 to greater angles ...

...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)

...the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

Ray-Tracing

Wolfgang Heidrich

Ray-Tracing Terminology

Terminology:

* Primary ray: ray starting at camera
Shadow ray
Reflected/refracted ray

Ray tree: all rays directly or indirectly spawned off
by a single primary ray
Note:

Need to limit maximum depth of ray tree to ensure
termination of ray-tracing process!

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

- [Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

Ray Tracing
Data Structures

Goal: reduce number of intersection tests per ray
Lots of different approaches:
(Hierarchical) bounding volumes
Hierarchical space subdivision
Oct-tree, k-D tree, BSP tree

Wolfgang Heidrich

Bounding Volumes
Idea:

Rather than testing every ray against a potentially
very complex object (e.g. triangle mesh), do a quick
conservative test first which eliminates most rays

Surround complex object by simple, easy to test
geometry (typically sphere or axis-aligned box)

Want to make bounding volume as tight as
possible!

Wolfgang Heidrich

10

- - s \\—/
Hierarchical Bounding Volumes
Extension of previous idea:

Use bounding volumes for groups of objects
O ® o O
©0 0| oo
O | P o
O 0 O O
O O D O
o | d
Spatial Subdivision Data EL’E

Structures

Bounding Volumes:

Find simple object completely enclosing complicated
objects

Boxes, spheres
Hierarchically combine into larger bounding volumes

Spatial subdivision data structure:
Partition the whole space into cells
Grids, oct-trees, (BSP trees)

Simplifies and accelerates traversal

Performance less dependent on order in which
objects are inserted

Wolfgang Heidrich

11

Regular Grid
Subdivide space into rectangular grid:

Associate every
object with the

cell(s) that it O
overlaps with

Find intersection:
traverse grid

In 3D: regular grid of
cubes (voxels):

Wolfgang Heidrich

Creating a Regular Grid
Steps:

Find bounding
box of scene

Choose grid O N O

resolution in X, O
Y, 2

Insert objects O (O

Objects that Cf
overlap

multiple cells
get referenced
by all cells
they overlap

Wolfgang Heidrich

12

Grid Traversal

Traversal:
Start at ray origin

While no intersection found

Go to next grid cell
along ray

Compute intersection of
ray with all objects in
the cell .

Determine closest such
intersection

- Check if that
intersection is inside
the cell

- If so, terminate search

Wolfgang Heidrich

Traversal
Note:

This algorithm calls for computing the intersection points
multiple times (once per grid cell)

In practice: store intersections for a (ray, object) pair once
computed, reuse for future cells

Wolfgang Heidrich

13

Regular Grid Discussion
Advantages?

Easy to construct
Easy to traverse

Disadvantages?
May be only sparsely filled
Geometry may still be clumped

Wolfgang Heidrich

Adaptive Grids

Subdivide until each cell contains no more than
n elements, or maximum depth dis reached

Nested Grids Octree/(Quadtree)

This slide and the next are curtsey of Fredo Durand atvlhTueiaion

14

Primitives in an Adaptive Grid

Can live at intermediate levels, or
be pushed to lowest level of grid

=
V Ak

Octree/(Quadtree)

Wolfgang Heidrich

Adaptive Grid Discussion
Advantages

Grid complexity matches geometric density
Disadvantages

More expensive to traverse than regular grid

~C
VQ

e

A
Q
SN

Wolfgang Heidrich

15

More global illumin

Wolfgang Heidrich

© Wolfgang Heidrich

Area Light Sources
So far:

All lights were either point-shaped or directional
Both for ray-tracing and the rendering pipeline

Thus, at every point, we only need to compute
lighting formula and shadowing for ONE light
direction

In reality:
All lights have a finite area

Instead of just dealing with one direction, we now
have to integrate over all directions that go to the
light source

Wolfgang Heidrich

Area Light Sources
Area lights produce soft shadows:

In 2D: — —7 Area light

~ Occluding surface

Receiving surface N
Unbra enumbra

(core shadow) (partial shadow) Wolfgang Heidrich

17

Area Light Sources

Point lights:

Only one light direction: .Poim light

I

reflected

=p-V-Iy,

V is visibility of light (0
or1)

p is lighting

model (e.g.

diffuse or Phong)

Wolfgang Heidrich

Are Light Sources

Area Lights:
Infinitely many light rays

Need to integrate
over all of them:

Irc{ﬂected = f p(w) : V(U)) : Iligh,(w) : dw

light
directions

Area light

Lighting model
visibility and

light intensity

can now be different

for every ray!

Wolfgang Heidrich

18

Integrating over Light Source
Rewrite the integration

Instead of integrating over directions
Ireﬂected = fp((l)) : V(w) : Ilight ((U)) dw

light
directions

we can integrate over points on the light source

—a)-V(p-
Ireﬂected (q) = f p(p I Z)_ q fzp q)) Ilighz (p) ’ ds) dt
where q: point on reflecting surface, p= F(s,t) is a
point on the area light

We are integrating over p

Dannminatnr: niiadratin fallnffl Wolfgang Heidrich

UBC

Integration

Problem:

Except for the simplest of scenes, either integral is
not solvable analytically!

This is mostly due to the visibility term, which could
be arbitrarily complex depending on the scene

So:
Use numerical integration

Effectively: approximate the light with a whole
number of point lights

Wolfgang Heidrich

19

Numerical Integration
Regular grid of point Iights
Area light

Problem:

will see 4 hard
shadows rather than

as soft shadow

Need LOTS of points
to avoid this problem

Wolfgang Heidrich

Monte Carlo Integration

Better:

Randomly choose
the points

Use different points on
light for computing the
lighting in different points
on reflecting surface

Area light

This produces
random noise

Visually preferable to
structured artifacts

Wolfgang Heidrich

Monte Carlo Integration

one shadow ray

lots of shadow rays

Monte Carlo Integration
Formally:

Approximate integral with finite sum

—a)-V(p-—
Ireﬂected (q) = f p(p q) (2p q) . Ilight (p) -ds- dt
s, lp _ql
A PP, =9) V(p;,-9)
zﬁE Ip—qP Ly (P))
i=1 i

where
— The p; are randomly chosen on the light source
= With equal probability!
— As the total area of the light

Al YN L £ 1 / 1 Wolfgang Heidrich

21

Sampling
Sample directions vs. sample light source

Most directions do not correspond to points on the

light source
— Thus, variance will be higher than samplingI light
dire mages by Matt Pharr

Monte Carlo Integration
Note:

This approach of approximating lighting integrals
with sums over randomly chosen points is much
more flexible than this!

In particular, it can be used for global illumination

— Light bouncing off multiple surfaces before
hitting the eye

Wolfgang Heidrich

Global lllumination
So far:

Have considered only light directly coming form the
light sources

— As well as mirror reflections, refraction

In reality:

Light bouncing off diffuse and/or glossy surfaces
also illuminates other surfaces

— This is called global illumination

Wolfgang Heidrich

Direct lllumination

Image by
Henrik Wann Jensen

Global lllumination

Image by
Henrik Wann Jensen

Rendering Equation

Equation guiding global illumination:
L (xw)=L,(xm,)+ fp(x,wi,wO)Li(wi)dw,.

=L,(x,m,)+ fp(x,wi,wO)LO(R(x,w,.),—wi)dwi
Where ©

p is the reflectance from o, to w, at point x

L, is the outgoing (l.e. reflected) radiance at point x in
direction o;

- Radiance is a specific physical quantity describing the
amount of light along a ray

- Radiance is constant along a ray

L. is the emitted radiance (=0 unless point x is on a light
source)

R is the “ray-tracing function”. It describes what point iSwergangHeicion

24

Rendering Equation

Equation guiding global illumination:
L,(x,)=L(x,)+ [p(x.0.0)Lw)do,

Q

=L, (xw,)+ fp(x,wi,a)O)Lo(R(x,a)i),—wi)dwi
Q

Note:
The rendering equation is an integral equation
This equation cannot be solved directly
Ray-tracing function is complicated!

Similar to the problem we had computing
illumination from area light sources!

ang Heidrich

Ray Casting

Cast a ray from the eye through each pixel

The following few slides are from Fred Durand
(MIT)

Ray Tracing

Cast a ray from the eye through each pixel
Trace secondary rays (light, reflection, refraction)

\

|
|
[~/
L
Monte Carlo Ray Tracing ’

- Cast a ray from the eye through each pixel
- Cast random rays from the visible point
Accumulate radiance contribution

T

)
Vi
4

ch

Monte Carlo Ray Tracing

- Cast a ray from the eye through each pixel
Cast random rays from the visible point
- Recurse

\\

T
I

UBC

N/
Monte Carlo
- Cast a ray from the eye through each pixel
Cast random rays from the visible point
- Recurse

T

ch

27

Monte Carlo

Systematically sample primary light

Monte Carlo Path Tracing

In practice:
Do not branch at every intersection point

This would have exponential complexity in the
ray depth!

Instead:

Shoot some number of primary rays through the
pixel (10s-1000s, depending on scene!)

For each pixel and each intersection point make
a single, random decision in which direction to
go next

Wolfgang Heidrich

Monte Carlo Path Tracing

- Trace only one secondary ray per recursion
- But send many primary rays per pixel

b

_\\i/

\/

e ,
T S
| — 2)

How to Sample?
Simple sampling strategy:

At every point, choose between all possible
reflection directions with equal probability

This will produce very high variance/noise if the
materials are specular or glossy

Lots of rays are required to reduce noise!

Better strategy: importance sampling

Focus rays in areas where most of the reflected
light contribution will be found

For example: if the surface is a mirror, then only
light from the mirror direction will contribute!

Glossy materials: prefer rays near the mirror

Wolfgang Heidrich

How to Sample?

Images by Veach & Guibas

Naive sampling strat;

How to Sample?
Sampling strategies are still an active

research area!l

Recent years have seen drastic advances in
performance

Lots of excellent sampling strategies have been

developed in statistics and machine learning
Many are useful for graphics

Wolfgang Heidrich

How to Sample?
Objective:

- Compute light transport in scenes using stochastic ray
tracing

— Monte Carlo, Sequential Monte Carlo
— Metropolis

[Burke, Ghosh, Heidrich ‘03]
Ghosh, Heidrich ‘06]
Ghosh, Doucet, Heidrich ‘06]

How to Sample?

- E.g importance sampling (left) vs. Sequential
Monte Carlo (right

Wolfgang Heidrich

3

Wolfgang Heidrich

Color

Wolfgang Heidrich

