Ray Tracing

Wolfgang Heldrich

Course Topics for the Rest of the Term

Ray-tracing & Global Illumination
- This week

Parametric Curves/Surfaces
- March 30/April 1
- Taught by Robert Bridson - I will be at a conference

Overview of current research
- April 3/6 (Ivo Ihrke – I am still at conference)

April 8 – Final Q&A (I will be back for that)

Ray-Parting

Basic Algorithm (Whithead):
for every pixel p,
 Generate ray r from camera position through pixel p,
 p = background color
for every object o in scene {
 if(r intersects o & intersection is closer than
 previously found intersections)
 Compute lighting at intersection point, using local
 normal and material properties, store result in p;
}

Ray-Tracing – Generation of Rays

Camera Coordinate System
- Origin: C (camera position)
- Viewing direction: v
- Up vector: u
- X direction: x = v x u

Note:
- Corresponds to viewing transformation in rendering pipeline!
- See gluLookAt...
Ray-Tracing – Generation of Rays

Other parameters:
- Distance of Camera from image plane: d
- Image resolution (in pixels): w, h
- Left, right, top, bottom boundaries in image plane: l, r, t, b

Then:
- Lower left corner of image: $O = C + d \cdot \mathbf{v} + l \cdot \mathbf{x} + b \cdot \mathbf{u}$
- Pixel at position $i, j (i=0, w-1; j=0, h-1)$:
 $P_{i,j} = O + \frac{t - 1}{w - 1} \cdot \mathbf{x} - j \cdot \frac{t - 1}{h - 1} \cdot \mathbf{u}$
 $= O + i \cdot \Delta \mathbf{x} - j \cdot \Delta \mathbf{y} \cdot \mathbf{v}$

Ray Intersections

Issues:
- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Efficient data structures so we don’t have to test intersection with every object

Ray Intersections

Spheres at origin:
- Implicit function: $S(x, y, z): x^2 + y^2 + z^2 = r^2$
- Ray equation:
 $R_{i,j}(t) = C + t \cdot \mathbf{v}_{i,j} = \begin{pmatrix} c_x \\ c_y \\ c_z \end{pmatrix} + t \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \begin{pmatrix} c_x + t \cdot v_x \\ c_y + t \cdot v_y \\ c_z + t \cdot v_z \end{pmatrix}$

Ray Intersections

Ray in 3D Space:
$R_{i,j}(t) = C + t \cdot (P_{i,j} - C) = C + t \cdot \mathbf{v}_{i,j}$

where $t = 0 \ldots \infty$

Task:
- Given an object o, find ray parameter t, such that $R_{i,j}(t)$ is a point on the object
 - Such a value for t may not exist
- Intersection test depends on geometric primitive

To determine intersection:
- Insert ray $R_{i,j}(t)$ into $S(x, y, z)$:
 $(c_x + t \cdot v_x)^2 + (c_y + t \cdot v_y)^2 + (c_z + t \cdot v_z)^2 = r^2$
- Solve for t (find roots)
 - Simple quadratic equation
Ray Intersections

Other Primitives:
- Implicit functions:
 - Spheres at arbitrary positions
 - Same thing
- Conic sections (hyperboloids, ellipsoid, paraboloids, cones, cylinders)
 - Same thing (all are quadratic functions)
- Higher order functions (e.g. tori and other quartic functions)
 - In principle the same
 - But root-finding difficult
 - Not to resolve to numerical methods

Ray Intersections

Other Primitives (cont)
- Polygons:
 - First intersect ray with plane
 - Linear implicit function
 - Then test whether point is inside or outside of polygon (2D test)
 - For convex polygons
 - Sufficient to test whether point in on the right side of every boundary edge
 - Similar to computation of outcodes in line clipping

Ray-Tracking

Issues:
- Generation of rays
- Intersection of rays with geometric primitives
- Geometric Transformations:
 - Lighting and shading
 - Efficient data structures so we don’t have to test intersection with every object

Ray-Tracking – Geometric Transformations

Geometric Transformations:
- Similar goal as in rendering pipeline:
 - Modeling scenes convenient using different coordinate systems for individual objects
- Problem:
 - Not all object representations are easy to transform
 - This problem is fixed in rendering pipeline by restriction to polygons (affine invariance)
 - Ray-Tracking has different solution:
 - The ray itself is always affine invariant
 - Thus: transform ray into object coordinates

Ray-Tracking – Geometric Transformations

Ray Transformation:
- For intersection test, it is only important that ray is in same coordinate system as object representation
- Transform all rays into object coordinates
 - Transform camera point and ray direction by inverse of model-view matrix
- Shading has to be done in world coordinates (where light sources are given)
 - Transform object space intersection point to world coordinates
 - Thus have to keep both world and object-space ray
Ray-Tracing

Issues:
- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- Efficient data structures so we don’t have to test intersection with every object

Ray-Tracing

Lighting and Shading

Local Effects:
- Local Lighting
 - Any reflection model possible
 - Have to talk about light sources, normals...
- Texture mapping
 - Color textures
 - Bump maps
 - Environment maps
 - Shadow maps

Ray-Tracing

Local Lighting

Light sources:
- For the moment: point and directional lights
- Later: are light sources
- More complex lights are possible
 - Area lights
 - Global illumination
 - Other objects in the scene reflect light
 - Everything is a light source!
 - Talk about this on Monday

Ray-Tracing

Local Lighting

Local surface information (normal...)
- For implicit surfaces \(F(x, y, z) = 0 \); normal \(n(x, y, z) \) can be easily computed at every intersection point using the gradient:
 \[
 n(x, y, z) = \left(\frac{\partial F(x, y, z)}{\partial x}, \frac{\partial F(x, y, z)}{\partial y}, \frac{\partial F(x, y, z)}{\partial z} \right)
 \]
- Example:
 \[
 F(x, y, z) = x^2 + y^2 + z^2 - r^2
 \]
 \[
 n(x, y, z) = \left(\frac{2x}{2}, \frac{2y}{2}, \frac{2z}{2} \right) \quad \text{Needs to be normalized!}
 \]

Ray-Tracing

Local Lighting

Local surface information
- Alternatively, can interpolate per-vertex information for triangles/meshes as in rendering pipeline
 - Phong shading!
 - Same as discussed for rendering pipeline
- Difference to rendering pipeline:
 - Interpolation cannot be done incrementally
 - Have to compute Barycentric coordinates for every intersection point (e.g. plane equation for triangles)

Ray-Tracing

Texture Mapping

Approach:
- Works in principle like in rendering pipeline
 - Given \(s, t \) parameter values, perform texture lookup
 - Magnification, minification just as discussed
- Problem: how to get \(s, t \)
 - Implicit surfaces often don’t have parameterization
 - For special cases (spheres, other conic sections), can use parametric representation
 - Triangles/meshes: use interpolation from vertices
Ray-Tracing Lighting and Shading

Global Effects
- Shadows
- Reflections/refractions

Ray-Tracing Reflections/Refractions

Approach:
- Send rays out in reflected and refracted direction to gather incoming light
- That light is multiplied by local surface color and Fresnel term, and added to result of local shading

Recursive Ray Tracing

Ray tracing can handle
- Reflection (chrome)
- Refraction (glass)
- Shadows

Spawn secondary rays
- Reflection, refraction
 - If another object is hit, recurse to find its color
 - Shadow
- Cast ray from intersection point to light source, check if intersects another object

Recursive Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
 if (Reflect(obj)) then
 reflect_color := RayTrace(ReflectRay(r,obj));
 else
 reflect_color := Black;
 if (Transparent(obj)) then
 refract_color := RayTrace(RefractRay(r,obj));
 else
 refract_color := Black;
 return Shade(reflect_color,refract_color,obj);
end;
Algorithm Termination Criteria

Termination criteria
- No intersection
- Reach maximal depth
 - Number of bounces
- Contribution of secondary ray attenuated below threshold
 - Each reflection/refraction attenuates ray

Reflection

Mirror effects
- Perfect specular reflection

Refraction

Happens at interface between transparent object and surrounding medium
- E.g. glass/air boundary

Snell’s Law
- \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \)
- Light ray bends based on refractive indices \(n_1, n_2 \)

Total Internal Reflection

As the angle of incidence increases from 0 to greater angles ...
- The refracted ray becomes dimmer (there is less reflection)
- The reflected ray becomes brighter (there is more reflection)
- The angle of refraction approaches 90 degrees until finally a reflected ray can no longer be seen.

Ray-Tracing Example Images

Ray-Tracing Terminology

Terminology:
- Primary ray: ray starting at camera
- Shadow ray
- Reflected/refracted ray
- Ray tree: all rays directly or indirectly spawned off by a single primary ray

Note:
- Need to limit maximum depth of ray tree to ensure termination of ray-tracing process.
Ray-Tracing

Issues:
- Generation of rays
- Intersection of rays with geometric primitives
- Geometric transformations
- Lighting and shading
- **Efficient data structures so we don’t have to test intersection with every object**

Ray Tracing

Data Structures
- Goal: reduce number of intersection tests per ray
- Lots of different approaches:
 - (Hierarchical) bounding volumes
 - Hierarchical space subdivision
 - Oct-tree, k-D tree, BSP tree

Bounding Volumes

Idea:
- Rather than testing every ray against a potentially very complex object (e.g., triangle mesh), do a quick **conservative** test first which eliminates most rays
 - Surround complex object by simple, easy to test geometry (typically sphere or axis-aligned box)
 - Want to make bounding volume as tight as possible!

Hierarchical Bounding Volumes

Extension of previous idea:
- Use bounding volumes for groups of objects

Spatial Subdivision Data Structures

Bounding Volumes:
- Find simple object completely enclosing complicated objects
 - Boxes, spheres
- Hierarchically combine into larger bounding volumes

Spatial subdivision data structure:
- Partition the whole space into cells
 - Grids, oct-trees, (BSP trees)
- Simplifies and accelerates traversal
- Performance less dependent on order in which objects are inserted

Regular Grid

Subdivide space into rectangular grid:
- Associate every object with the cell(s) that it overlaps with
- Find intersection: traverse grid

In 3D: regular grid of cubes (voxels)
Creating a Regular Grid

Steps:
- Find bounding box of icons
- Choose grid resolution in x, y, z
- Insert objects
- Objects that overlap multiple cells get referenced by all cells they overlap.

Grid Traversal

Traversal:
- Start at ray origin
- While no intersection found
 - Go to next grid cell along ray
 - Compute intersection of ray with all objects in the cell
 - Determine closest such intersection
 - Check if that intersection is inside the cell
 - If so, terminate search

Traversals

Note:
- This algorithm calls for computing the intersection points multiple times (once per grid cell)
- In practice: store intersections for a (ray, object) pair once computed, reuse for future cells

Regular Grid Discussion

Advantages?
- Easy to construct
- Easy to traverse

Disadvantages?
- May be only sparsely filled
- Geometry may still be clumped

Adaptive Grids

Subdivide until each cell contains no more than n elements, or maximum depth d is reached.

Primitives in an Adaptive Grid

Can live at intermediate levels, or be pushed to lowest level of grid

This slide and the next are courtesy of Fredo Durand at MIT.
Adaptive Grid Discussion

Advantages
- Grid complexity matches geometric density

Disadvantages
- More expensive to traverse than regular grid

Coming Up...

Wednesday/Friday:
- Global illumination