© Wolfgang Heidrich

ue April 1

Ruwm (mxt mdo
+ Chapter 10 (ray tracing), except 10.8-10.10
« Chapter 14 (global illumination)

Wolfgang Heidrich

Course Topics
for the Rest of the Term

Color
Monday, Today

Ray-tracing & Global lllumination
Friday, next week

Parametric Curves/Surfaces
March 30/April 1
Taught by Robert Bridson - | will be at a conference

Overview of current research
April 3/6 (Ivo Ihrke — | am still at conference)

April 8 - Final Q&A (I will be back for that)

Color Matching Experiments

Performed e
in the 1930s

Idea: perceptually based measurement
shine given wavelength (\) on a screen

User must control three pure lights producing three other
wavelengths (say R=700 nm, G=546 nm, and B=438 nm)

Adjust intensity of RGB until colors are identical

Wolfgang Heidrich

Color Matching Experiment

Results

It was found that any color S(A) could be matched
with three suitable primaries A(A), B(A), and C(A)

Used monochromatic light at 438, 546, and 700

nanometers
Also found the space is linear, |.e. if
R(A) =S(A)
then
R(A) + M(X) = S(A) + M(X)
and
k-R(A)=k-S(A)

Negative Lobes
Actually: AN

Exact target match - |

possible sometimes anounts | {4/

requires “negative light”

4o~/ 700
wavelength (nm)

Some red has to be added to target color to permit
exact match using “knobs” on RGB intensity output

Equivalent mathematically to removing red from RGB
output

Wolfgang Heidrich

Negative Lobes

So:
Can't %sn erate all other wavelengths with any set of three positive
monochromatic lights!
Solution:
Convert to new synthetic “primaries” to make the color matching
== X 236460 -0.51515 0.00520\(R
Y|=|-0.89653 142640 -0.01441(G
Z -0.46807 0.08875 1.00921\B
Note:

R, G, B are the same monochromatic primaries as before

The corresponding matching functions x(»), y()), z(\) are now
positive everywhere

But the primaries contain “negative” light contributions, and are
therefore not physically realizable

Wolfgang Heidrich

Matching Functions -

<
=2
=
=
g
B
“w 0) 0
Wavelength (nm) Wavelength (nm)
Measured basis Transformed basis
Monochromatic lights 0 “‘imaginary” lights
Physical observations 0 All positive, unit area matching

. functions
Negative lobes . .
Y is luminance, no hue

X'Z no Iumlnance Wolfgang Heidrich

Notation

Don’t confuse:
Synthetic primaries X, Y, Z
Contain negative frequencies
Do not correspond to visible colors
Color matching functions x(A), y(A), z(A\)
Are non-negative everywhere
Coefficients X Y. Z

Normalized chromaticity values
X Y Z

X = V= 2=
X+Y+Z7 X+Y+Z7 X+Y+Z7Z

Wolfgang Heidrich

CIE

Chromaticity
Diagram

- ‘ 4
Diagram

Blackbody
curve

lllumination:

Candle
2000K

Light bulb
3000K (A)

Sunset/
sunrise

3200K

Day light
6500K (D)
Overcast
day 7000K
Lightning
>20,000K

Wolfgang Heidrich

Used by OpenGL
+ Hardware-centric

» Describes the colors that can be
generated with specific RGB light
sources

RGB color cube sits within CIE
color space
* Subset of perceivable colors
- Scaled, rotated, sheared cube

Device Color Gamuts

Use CIE chromaticity diagram to compare the
gamuts of varinoyus devices

X, Y, and Z are hypothetlcal light sources, not used in
nractice ac I“IP\III"P nrimaries

I p—
- 08) 0.6
UJMIEQIII B

- R ‘L\ * " color monitor - [L_\
05 3 s [1{ ™
T N 04 T %
2
L~

\ LA

e - O\ RN
§ AT
IRV m 1N

0 04 08

C | E V}&fgang Heidrich

Gamut Mapping

Where does
this color go?

CIELAB

Copyright 1995-1999, Adobe Systems Inc., all rights reserved

Wolfgang Heidrich

Additive vs. Subtractive Colors

Additive: light ¢l 1] [®]
Monitors, LCDs M|=|1|-|G
RGB model y 1 B

Subtractive: pigment

Printers
CMY (K) model

Wolfgang Heidrich

HSV Color Space

More intuitive color space for people
Saturation

H =Hue
Value
S = Saturation

V =Value
Standal

Or brightness B Colors:

d Custom

Or intensity |

Current

Wolfgang Heidrich

14) (maxIntensity)

= a (maxIntensity)

Gamma for CRTs:
- Around 2.4

Wolfgang Heidrich

© Wolfgang Heidrich

Overview
So far

Real-time/HW rendering w/ Rendering Pipeline
Rendering algorithms using the Rendering Pipeline

Now
Ray-Tracing
Simple algorithm for software rendering

Usually offline (e.g. movies etc.)

?ut: research on making this method real-
ime

Extremely flexible (new effects can easily be
Incorporated)

Wolfgang Heidrich

Ray-Tracing

Basic Algorithm (Whithead):
for every pixel p; {

Generate ray r from camera position through pixel p;
p;= background color
for every object o in scene {

1f(r intersects o && intersection is closer than
previously found intersections)

Compute lighting at intersection point, using local
normal and matenal properties; store result in p;

Wolfgang Heidrich

10

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

Efficient data structures so we don't have to test

intersection with every object

Wolfgang Heidrich

Ray-Tracing -
Generation of Rays

Camera Coordinate System
Origin: C (camera position)
Viewing direction: v
Up vector: u
X direction: x=vxu

Note:

Corresponds to viewing
transformation in rendering pipeline!

See gluLookAt...

Wolfgang Heidrich

11

Ray-Tracing - &7
Generation of Rays

Other parameters:
Distance of Camera from image plane; d
Image resolution (in pixels): w, A

Left, right, top, bottom boundaries :
in image plane: 7,7, ¢, b
CX

I =
Lower left corner of image: O=C+dv+Il-x+b'u
Pixel at position i, j (i=0..w-1, j=0..h-1):

. r=1 _t-b
F,=0+i ‘X—j——-u

w-1 h-1
=0+i-Ax-xX-j-Ay'y

Wolfgang Heidrich

Ray-Tracing —
Generation of Rays

Ray in 3D Space:
R, (t)=C+t-(P;,-C)=C+t-v,,

where t=0... ©

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
> |ntersection of rays with geometric primitives
Geometric transformations
Lighting and shading

Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

Ray Intersections
Task:

Given an object o, find ray parameter ¢, such that
R, (r) is a point on the object

Such a value for t may not exist
Intersection test depends on geometric primitive

Wolfgang Heidrich

13

Ray equation:

cx X
R, ,@)=C+t-v, =lc, |+t:|v, |=
CZ vZ

Wolfgang Heidrich

Insertray R, (#) Into S(x,3,2):

Solve for 7 (find roots)
Simple quadratic equation

Wolfgang Heidrich

14

Ray Intersections
Other Primitives:

- Implicit functions:
Spheres at arbitrary positions
Same thing

Conic sections (hyperboloids, ellipsoids,
paraboloids, cones, cylinders)

Same thing (all are quadratic functions!)

— Higher order functions (e.g. tori and other quartic
functions)

In principle the same
= But root-finding difficult
Net to resolve to numerical methods

Wolfgang Heidrich

Ray Intersections

Other Primitives (cont)
Polygons:
First intersect ray with plane
linear implicit function

Then test whether point is inside or outside of
polygon (2D test)

For convex polygons

Suffices to test whether point in on the right
side of every boundary edge

Similar to computation of outcodes in line
clipping

Wolfgang Heidrich

15

Ray-Tracing

Issues:

Generation of rays

Intersection of rays with geometric primitives
> Geometric transformations

Lighting and shading

Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

Ray-Tracing - =
Geometric Transformations

Geometric Transformations:
Similar goal as in rendering pipeline:

Modeling scenes convenient using different
coordinate systems for individual objects

Problem:

Not all object representations are easy to
transform

This problem is fixed in rendering pipeline by
restriction to polygons (affine invariancel)

Wolfgang Heidrich

Ray-Tracing - ==
Geometric Transformations '

Geometric Transformations:
Similar goal as in rendering pipeline:

Modeling scenes convenient using different
coordinate systems for individual objects

Problem:

Not all object representations are easy to
transform

This problem is fixed in rendering pipeline by
restriction to polygons (affine invariancel)

Ray-Tracing has different solution:
The ray itself is always affine invariant!
Thus: transform ray into object coordinatggs!

ahg Heidrich

Ray-Tracing - &7
Geometric Transformations

Ray Transformation:

For intersection test, it is only important that ray is
in same coordinate system as object representation

Transform all rays into object coordinates

Transform camera point and ray direction by
inverse of model/view matrix

Shading has to be done in world coordinates
(where light sources are given)

Transform object space intersection point to
world coordinates

Thus have to keep both world and object-space
ray

Wolfgang Heidrich

17

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations

» Lighting and shading

Efficient data structures so we don't have to test

intersection with every object

Wolfgang Heidrich

Ray-Tracing
Lighting and Shading

Local Effects:
Local Lighting
Any reflection model possible
Have to talk about light sources, normals...
Texture mapping
Color textures
Bump maps
Environment maps
Shadow maps

Wolfgang Heidrich

18

Ray-Tracing
Local Lighting

Light sources:
For the moment: point and directional lights
Later: are light sources
More complex lights are possible
Area lights
— Global illumination

Other objects in the scene reflect light
Everything is a light source!
Talk about this on Monday

Wolfgang Heidrich

Ray-Tracing %
Local Lighting "

Local surface information (normal...)

For implicit surfaces F(x,y,=)=0: normal n(x,y,z) can
be easily computed at every intersection point using

the gradient ey) 9x
n(xaya Z) = aF(x,y’Z)/ay
OF (x,,z)/ 9z
Example: F(x,y,z)=x’+y’+z" =r’
2x

n(x,y,z)=|2y Needs to be normalized!
2z

Wolfgang Heidrich

Ray-Tracing =R
Local Lighting

Local surface information

Alternatively: can interpolate per-vertex information
for triangles/meshes as in rendering pipeline

Phong shading/

Same as discussed for rendering pipeline
Difference to rendering pipeline:

Interpolation cannot be done incrementally

Have to compute Barycentric coordinates for
every intersection point (e.g plane equation for

triangles)
Ray-Tracing E-;"E
Texture Mapping ‘
Approach:

Works in principle like in rendering pipeline

Given s, t parameter values, perform texture
lookup

Magnification, minification just as discussed
Problem: how to get s, ¢

Implicit surfaces often don’t have
parameterization

For special cases (spheres, other conic
sections), can use parametric representation

Triangles/meshes: use interpolation from
vertices

Wolfgang Heidrich

Ray-Tracing @
- - - v/

Lighting and Shading
Global Effects

Shadows

Reflections/refractions
Ray-Tracing E”E
Shadows ‘
Approach:

To test whether point is in shadow, send out
shadow rays to all light sources

If ray hits another object the point lies in shadow

Wolfgang Heidrich

21

Ray-Tracing
Reflections/Refractions

Approach:

Send rays out in reflected and refracted direction to
gather incoming light
That light is multiplied by local surface color and

Fresnel term, and added to result of local shading

Wolfgang Heidrich

Recursive Ray Tracing
Ray tracing can handle

Reflection (chrome)
Refraction (glass)
Shadows

Spawn secondary rays
Reflection, refraction

If another object is hit,

recurse to find its color projection
reference

Shadow point

Cast ray from intersection
point to light source, check if
intersects another object

pixel positions
on projection
plane

Wolfgang Heidrich

Recursive Ray-Tracing

Ray Whitted, 1980

Recursive Ray-Tracing Algorithm

RayTrace(r,scene)
obj := FirstIntersection(r,scene)
if (no obj) return BackgroundColor;
else begin
if (Reflect(obj)) then
reflect_color := RayTrace(ReflectRay(r,0bj));
else
reflect_color := Black;
if (Transparent(obj)) then
refract_color := RayTrace(RefractRay(r,0bj));
else
refract_color := Black;
return Shade(reflect_color,refract_color,obj);
end; Wolfgang Heidrich

Algorithm Termination Criteria

Termination criteria
No intersection
Reach maximal depth
— Number of bounces

Contribution of secondary ray attenuated below
threshold

— Each reflection/refraction attenuates ray

Wolfgang Heidrich

Reflection "
Mirror effects 0|6

Perfect specular reflection

Wolfgang Heidrich

24

Refraction d n

Happens at interface between 0,
transparent object and
surmrounding medium

E.g. glass/air boundary t

Snell’s Law

¢, sinf, = ¢, sinb,

Light ray bends based on
refractive indices ¢y, ¢,

Wolfgang Heidrich

Total Internal Reflection

As the angle of incidence increases from 0 to greater angles ...

0° 4 2°

1 /77
0° 15° 0° B
...the refracted ray becomes dimmer (there is less refraction)
...the reflected ray becomes brighter (there is more reflection)

..the angle of refraction approaches 90 degrees until finally
a refracted ray can no longer be seen.

Ray-Tracing

Wolfgang Heidrich

Ray-Tracing Terminology

Terminology:

- Primary ray: ray starting at camera
Shadow ray
Reflected/refracted ray

Ray tree: all rays directly or indirectly spawned off
by a single primary ray

Note:

Need to limit maximum depth of ray tree to ensure
termination of ray-tracing process!

Wolfgang Heidrich

Ray-Tracing

Issues:
Generation of rays
Intersection of rays with geometric primitives
Geometric transformations
Lighting and shading

+ Efficient data structures so we don't have to test
intersection with every object

Wolfgang Heidrich

Ray Tracing
Data Structures

Goal: reduce number of intersection tests per ray
Lots of different approaches:
(Hierarchical) bounding volumes
Hierarchical space subdivision
Oct-tree, k-D tree, BSP tree

Wolfgang Heidrich

27

Bounding Volumes
Idea:

Rather than testing every ray against a potentially
very complex object (e.g. triangle mesh), do a quick
conservative test first which eliminates most rays

Surround complex object by simple, easy to test
geometry (typically sphere or axis-aligned box)

Want to make bounding volume as tight as
possible!

Wolfgang Heidrich

Hierarchical Bounding Volumes

Extension of previous idea:
Use bounding volumes for groups of objects

O O OO
O ¢ Q @) o O
o |l o
O o e 0
o 94
o |o O

Wolfgang Heidrich

Spatial Subdivision Data
Structures

Bounding Volumes:

Find simple object completely enclosing complicated
objects

—~ Boxes, spheres
Hierarchically combine into larger bounding volumes

Spatial subdivision data structure:
Partition the whole space into cells
— Grids, oct-trees, (BSP trees)
Simplifies and accelerates traversal

Performance less dependent on order in which
objects are inserted

Wolfgang Heidrich

Regular Grid
Subdivide space into rectangular grid:

Associate every
object with the

cell(s) that it O
overlaps with

Find intersection:
traverse grid

In 3D: regular grid of
cubes (voxels):

Wolfgang Heidrich

Creating a Regular Grid
Steps:

Find bounding
box of scene

- Choose grid O 9 O |0
resolution in X,
Y, Z O

- Insert objects O ¢ O

- Objects that CT
overlap
multiple cells
get referenced
by all cells

they overlap

Wolfgang Heidrich

Grid Traversal

Traversal:
Start at ray origin

While no intersection found

Go to next grid cell T
along ray

Compute intersection of =
ray with all objects in
the cell _

Determine closest such
intersection

— Check if that
intersection is inside
the cell

If so, terminate search

Wolfgang Heidrich

Wolfgang Heidrich

y 1o construct
—asy to traverse

Disadvantages?
- May be only sparsely filled
+ Geometry may still be clumped

Wolfgang Heidrich

3

Adaptive Grids

Subdivide until each cell contains no more than

n elements, or n

naximum depth dis reached

AR

Nested Grids

Octree/(Quadtree)

This slide and the next are curtsey of Fredo Durand atvM{-Tueiicn

Primitives in an Adaptive Grid

Can live at intermediate levels, or
be pushed to lowest level of grid

14

A

A
9

Octree/(Quadtree)

Wolfgang Heidrich

ity matches geometric density

Wolfgang Heidrich

More ray-tracing

B ebaITnaton

Wolfgang Heidrich

