Color

Wolfgang Heidrich

Course News

Assignment 3 (project)
• Due April 1

Reading (this week)
• Chapter 20 (color)

Reading (this week & next)
• Chapter 10 (ray tracing)
Course Topics for the Rest of the Term

Color
- Monday, Today

Ray-tracing & Global Illumination
- Friday, next week

Parametric Curves/Surfaces
- March 30/April 1
- Taught by Robert Bridson - I will be at a conference

Overview of current research
- April 3/6 (Ivo Ihrke – I am still at conference)

April 8 – Final Q&A (I will be back for that)

Electromagnetic Spectrum

THE ELECTROMAGNETIC SPECTRUM

- Wavelength (meters)
- Frequency (waves per second)
- Energy of light photon (electron-volts)
- Sources (radio, TV, radar, light, X-rays, gamma rays)
- Common name of waves (radio, infrared, ultraviolet, X-rays, gamma rays)
- Map of a wavelength

2
Light Sources

Common light sources differ in the kind of spectrum they emit:
- Continuous spectrum
 - Energy is emitted at all wavelengths
 - Blackbody radiation
 - Tungsten light bulbs
 - Certain fluorescent lights
 - Sunlight
 - Electrical arcs
- Line spectrum
 - Energy is emitted at certain discrete frequencies

Blackbody Radiation

Black body
- Dark material, so that reflection can be neglected
- Spectrum of emitted light changes with temperature
 - This is the origin of the term “color temperature”
 - E.g. when setting a white point for your monitor
 - Cold: mostly infrared
 - Hot: redish
 - Very hot: bluish
- Demo:
 http://www.mhhe.com/physsci/astronomy/applets/Blackbody/frame.html
Line Spectrum

Examples:
- Ionized gases
- Lasers
- Some fluorescent lamps

Physiology of Vision

The retina
- Rods
 - B/w, edges
- Cones
 - Color!
Physiology of Vision

Center of retina is densely packed region called the fovea.

- Cones much denser here than the *periphery*

1.35 mm from retina center

4 μm

8 mm from retina center

Color/Lightness Constancy

Do they match?

Image courtesy of John McGinn

Wolfgang Heidrich
Color/Lightness Constancy

Color Constancy

- Automatic “white balance” from change in illumination
- Vast amount of processing behind the scenes!
- Colorimetry vs. perception

From Color Appearance Models, fig 8-1
Tristimulus Theory of Color Vision

• Although light sources can have extremely complex spectra, it was empirically determined that colors could be described by only 3 **primaries**

• Colors that look the same but have different spectra are called **metamers**

• Metamer demo:
 http://www.cs.brown.edu/exploratories/freeSoftware/catalogs/color_theory.html

Color Matching Experiments

Performed in the 1930s

Idea: perceptually based measurement

• shine given wavelength (λ) on a screen

• User must control three pure lights producing three other wavelengths (say R=700 nm, G=546 nm, and B=438 nm)

• Adjust intensity of RGB until colors are identical
Color Matching Experiment

Results
- It was found that any color $S(\lambda)$ could be matched with three suitable primaries $A(\lambda)$, $B(\lambda)$, and $C(\lambda)$
 - Used monochromatic light at 438, 546, and 700 nanometers
- Also found the space is linear, i.e. if $R(\lambda) \equiv S(\lambda)$
 then $R(\lambda) + M(\lambda) \equiv S(\lambda) + M(\lambda)$
 and $k \cdot R(\lambda) \equiv k \cdot S(\lambda)$

Negative Lobes

Actually:
- Exact target match possible sometimes requires “negative light”
- Some red has to be added to target color to permit exact match using “knobs” on RGB intensity output
- Equivalent mathematically to removing red from RGB output
Notation

Don’t confuse:
- Primaries: the spectra of the three different light sources: **R, G, B**
 - For the matching experiments, these were **monochromatic** (i.e. single wavelength) light!
 - Display primaries usually have a wider spectrum
- Coefficients **R, G, B**
 - Specify how much of **R, G, B** is in a given color
- Color matching functions: r(λ), g(λ), b(λ)
 - Specify how much of **R, G, B** is needed to produce a color that is a metamer for pure monochromatic light of wavelength λ

Determine Matching for Arbitrary Spectra

Given
- Some light spectrum s(λ)

How do we find R, G, B?
- Coefficients to describe color of s(λ) in RGB space
 - i.e. as mixtures of the specific monochromatic colors mentioned!
Determine Matching for Arbitrary Spectra

Given
- Some light spectrum \(s(\lambda)\)

How do we find \(R, G, B\)?
- Coefficients to describe color of \(s(\lambda)\) in RGB space

A: Integrate with color matching functions
- Treat spectra as vector space
- Dot product of \(s_1, s_2\) defined as
 \[
 \int s_1(\lambda)s_2(\lambda)d\lambda
 \]
 \[
 R = \int s(\lambda)r(\lambda)d\lambda
 \]
 \[
 G = \int s(\lambda)g(\lambda)d\lambda
 \]
 \[
 B = \int s(\lambda)b(\lambda)d\lambda
 \]

Negative Lobes

So:
- Can't generate all other wavelengths with any set of three positive monochromatic lights!

Solution:
- Convert to new synthetic "primaries" to make the color matching easy
 \[
 \begin{pmatrix}
 X \\
 Y \\
 Z
 \end{pmatrix} = \begin{pmatrix}
 2.36460 & -0.89653 & -0.46807 \\
 -0.51515 & 1.42640 & 0.08875 \\
 0.00520 & -0.01441 & 1.00921
 \end{pmatrix}
 \begin{pmatrix}
 R \\
 G \\
 B
 \end{pmatrix}
 \]

Note:
- \(R, G, B\) are the same monochromatic primaries as before
- The corresponding matching functions \(x(\lambda), y(\lambda), z(\lambda)\) are now positive everywhere
- But the primaries contain "negative" light contributions, and are therefore not physically realizable

Wolfgang Heidrich
Negative Lobes

In general:
- It is not possible to find three color primaries (monochromatic or continuous spectrum) that can produce all visible colors with positive weights.

Q: How can this be?
- We only have 3 types of cones, after all?

A: the spectral sensitivity curves of cones overlap
- i.e. the cones span a linear color (vector) space, but this space is not orthonormal!
- Orthonormalization introduces negative weights…
Matching Functions - CIE Color Space

- CIE defined three “imaginary” lights X, Y, and Z, any wavelength \(\lambda \), can be matched perceptually by positive combinations

![Graph showing X, Y, and Z functions]

Matching Functions - Measured vs. CIE Color Spaces

Measured basis
- Monochromatic lights
- Physical observations
- Negative lobes

Transformed basis
- “Imaginary” lights
- All positive, unit area matching functions
- Y is luminance, no hue
- X, Z no luminance
Notation

Don’t confuse:
- Synthetic primaries X, Y, Z
 - Contain negative frequencies
 - Do not correspond to visible colors
- Color matching functions $x(\lambda), y(\lambda), z(\lambda)$
 - Are non-negative everywhere
- Coefficients X, Y, Z
- Normalized chromaticity values

$$x = \frac{X}{X + Y + Z}, \quad y = \frac{Y}{X + Y + Z}, \quad z = \frac{Z}{X + Y + Z}$$

CIE Gamut and λ Chromaticity Diagram

3D gamut

Chromaticity diagram
- Hue only, no intensity
Facts about the CIE “Horseshoe” Diagram

- All visible colors lie inside the horseshoe
 - *Result from color matching experiments*
- Spectral (monochromatic) colors lie around the border
 - *The straight line between blue and red contains the purple tones*
- Colors combine linearly (i.e. along lines), since the xy-plane is a plane from a linear space

Facts about the CIE “Horseshoe” Diagram (cont.)

A point C can be chosen as a white point corresponding to an illuminant

- Usually this point is of the curve swept out by the black body radiation spectra for different temperatures
- Relative to C, two colors are called complementary if they are located along a line segment through C, but on opposite sides (i.e. C is an affine combination of the two colors)
- The dominant wavelength of the color is found by extending the line from C through the color to the edge of the diagram
- Some colors (i.e. purples) do not have a dominant wavelength, but their complementary color does
CIE Diagram

- Blackbody curve
- Illumination:
 - Candle 2000K
 - Light bulb 3000K (A)
 - Sunset/sunrise 3200K
 - Day light 6500K (D)
 - Overcast day 7000K
 - Lightning >20,000K

Color Interpolation, Dominant & Opponent Wavelength

Complementary wavelength
RGB Color Space (Color Cube)

- Define colors with \((r, g, b)\) amounts of red, green, and blue
 - Used by OpenGL
 - Hardware-centric
 - Describes the colors that can be generated with specific RGB light sources

RGB color cube sits within CIE color space
- Subset of perceivable colors
- Scaled, rotated, sheared cube

Device Color Gamuts

- Use CIE chromaticity diagram to compare the gamuts of various devices
 - X, Y, and Z are hypothetical light sources, not used in practice as device primaries
Gamut Mapping

Where does this color go?

Additive vs. Subtractive Colors

Additive: light
- Monitors, LCDs
- RGB model

\[
\begin{bmatrix}
C \\
M \\
Y
\end{bmatrix} = \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} - \begin{bmatrix}
R \\
G \\
B
\end{bmatrix}
\]

Subtractive: pigment
- Printers
- CMY(K) model
HSV Color Space

More intuitive color space for people

- H = Hue
- S = Saturation
- V = Value
 - Or brightness B
 - Or intensity I

Monitors

Monitors have nonlinear response to input

- Characterize by **gamma**
 - displayedIntensity = a\(^\gamma\) (maxIntensity)

Gamma correction

- displayedIntensity = \((a^{1/\gamma})^\gamma\) (maxIntensity)
 = a (maxIntensity)

Gamma for CRTs:

- Around 2.4
Coming Up...

Friday, next week:

- Ray-tracing