© Wolfgang Heidrich

Due April 1

— Everything after transformations up to and
including this lecture

— Questions on rendering pipeline as a whole

Wolfgang Heidrich

_J
Shadows
What are shadows?
What distinguishes a point in shadow from a lit
point?
L
\Z
Shadows
Types of light sources

Point, directional

Area lights and generally shaped lights
Not considered here
Later: ray-tracing for such light sources

Problem statement

A shadow algorithm for point and directional lights
determines which scene points are

Visible from the light source (l.e. illuminated)
Invisible from the light source (l.e. in shadow)
Thus: shadow casting is a visibility problem! wengseision

Types of Shadow Algorithms
Object Space

Like object space visibility algorithms, the method
computes in object space which polygon parts that
are illuminated and which are in shadow

Individual parts are then drawn with different
Intensity

Typically slow, O(n”2), not for dynamic scenes
Image Space
Determine visibility per pixel in the final image
Sort of like depth buffer
Shadow maps

Chandnus vuinliimae Wolfgang Heidrich

Credits

The following shadow mapping slides are taken
1‘2r86nzl\/lark Kilgard's OpenGL course at Siggraph

Wolfgang Heidrich

Shadow Mapping =
Concept (1)

Depth testing from the light’s
point-of-view
Two pass algorithm
First, render depth buffer from the light’s point-of-view
The result is a “depth map” or “shadow map”

Essentially a 2D function indicating the depth of
the closest pixels to the light

This depth map is used in the second pass

Wolfgang Heidrich

Shadow Mapping ==
Concept (2)

Shadow determination with the
depth map
Second, render scene from the eye’'s point-of-
view
For each rasterized fragment

Determine fra?_ment’s XYZ position
relative to the light

This light position should be setup to
match the frustum used to create the
depth map

Compare the depth value at light position

XY in the depth map to fragment's light
pOSItlon Z Wolfgang Heidrich

The Shadow Mapping
Concept (3)

The Shadow Map Comparison

- Two values

= A =Z value from depth map at fragment’s light XY
position

« B =Z value of fragment’s XYZ light position

If B is greater than A, then there must be something closer to
the light than the fragment

« Then the fragment is shadowed

IfA and B are approximately equal,
the fragment is lit

Wolfgang Heidrich

Shadow Mapping ==
with a Picture in 2D (1)

The A < B shadowed fragment case

Sy / depth map image plane
/’u\\

lslc%ll:l‘fce ®@
DOMA\N e \ eye

..........; o :‘.\ position
v eye view image plane,
a.k.a. the frame buffer
fragment’s
light Z = B/

depth map Z =A

Wolfgang Heidrich

Shadow Mapping =
with a Picture in 2D (2)

Tz N Hooogozidoyyad feigaooe ezigg

e / depth map image plane

7N
_ / depthmap Z =A
light ®

source S \

eye

\ position
d eye view image plane,
a.k.a. the frame buffer
fragment's
lightZ=B /

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (1)

A scene with fairly complex shadows

the point
light source

Wolfgang Heidrich

Visualizing the Shadow ==
Mapping Technique (2)

Compare with and without shadows

with shadows without shadows

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (3)

The scene from the light’s point-of-view

FYI: from the
eye’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (4)

The depth buffer from the light’s point-of-view

FYI: from the
light’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (5)

Projecting the depth map onto the eye’s view

FYI: depth map for
light’s point-of-view
again

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Projecting light’s planar distance onto eye’s view

Wolfgang Heidrich

Visualizing the Shadow
Mapping Technique (6)

Comparing light distance to light depth map

Green is
where the
light planar Non-green is
distance and where
the light shadows
depth map are should be
approximately

equal

Wolfgang Heidrich

Visualizing the Shadow &

Mapping Technique (7)
Complete scene with shadows
Notice how Notice how
specular curved
highlights surfaces cast
never appear shadows on

in shadows each other

Wolfgang Heidrich

In Practice: =
Depth Map Precision Issues

Have to add a little offset to depth map values to account for
limited precision

Too little bias, Too much bias, shadow
everything begins to starts too far back
shadow

J.I'St ”ght Wolfgang Heidrich

10

What is
Projective Texturing?

An intuition for projective texturing

> The slide projector analogy

Wolfgang Heidrich

About
Projective Texturing (1)

First, what is perspective-correct texturing?
Normal 2D texture mapping uses (s, t) coordinates
2D perspective-correct texture mapping

= Means (s, t) should be interpolated linearly
in eye-space

= So compute per-vertex s/w, t/w, and 1/w

= Linearly interpolated these three
parameters over polygon

. Pecrj—fragment compute s'= (s/w) / (1/w)
an
t = (tiw) /[(1/w)

= Results in per-fragment perspective
correct (s', t)

Wolfgang Heidrich

11

About
Projective Texturing (2)

So what is projective texturing?

* Now consider homogeneous texture coordinates
“ (s, t, r,) -->(s/q, t/q, r/q)

= Similar to homogeneous clip coordinates where

(X, ¥, 2, W) = (XA, y\w, ziw)
- |Idea is to have (s/q, t/q, r/q) be projected per-fragment

Wolfgang Heidrich

Back to the Shadow
Mapping Discussion. ..

Assign light-space texture coordinates

to polygon vertices

Transform eye-space (X, Y, z, W) coordinates to
the light's view frustum (match how the light's

depth map is generated)

Further transform these coordinates to map
directly into the light view's depth map

Expressible as a projective transform

(s/q, t/q) will map to light's depth map texture

Wolfgang Heidrich

12

Shadow Map Operation
Next Step:

Compare depth map value to distance of fragment
from light source

Different GPU generations support different means
of implementing this

Today’s GPUs: pixel shader!

Earlier: special hardware for implmenting this

feature (e.g. SGI), or just using alpha blending
[Heidrich’99]

Wolfgang Heidrich

Issues with Shadow =
- N/
Mapping (1)
Not without its problems

Prone to aliasing artifacts
‘percentage closer” filtering helps this
normal color filtering does not work well
Depth bias is not completely foolproof

Requires extra shadow map rendering pass and
texture loading

Higher resolution shadow map reduces blockiness
but also increase texture copying expense

Wolfgang Heidrich

13

Hardware Shadow Map ¥
Filtering Example

GL_NEAREST: blocky GL_LINEAR: antialiased edges

Low shadow map resolution
used to heightens filtering artifacts

Wolfgang Heidrich

Issues with Shadow
Mapping (2)

Not without its problems

Shadows are limited to view frustums

could use six view frustums for omni-directional
light

Objects outside or crossing the near and far clip planes
are not properly accounted for by shadowing
move near plane in as close as possible

but too close throws away valuable depth map
precision when using a projective frustum

Wolfgang Heidrich

14

More Examples

Complex objects all shadow

Wolfgang Heidrich

More Examples

Even the floor casts shadow

Note shadow
leakage due to
infinitely thin
Jloor

Could be fixed by

giving floor
thickness

Wolfgang Heidrich

15

Combining Projective Texturing E’%
for Spotlights

Use a spotlight-style projected texture to give
shadow maps a spotlight falloff

\ L\
7 P

Wolfgang Heidrich

Combining Shadows with =
Atmospherics "

Shadows in a dusty room

Stm ulate atmospheric effects such
as suspended dust

1) Construct shadow map
2) Draw scene with shadow map

3) Modulate projected texture
image
with projected shadow map
4) Blend back-to-front shadowed

slicing planes also modulated
by projected texture image

Credit: Cass Everitt

Wolfgang Heidrich

Shadow Maps

Approach for shadows from point light
sources

Surface point is in shadow if it is not visible from the
light source

Use depth buffer to test visibility:
Render scene from the point light source
Store resulting depth buffer as texture map

For every fragment generated while rendering
from the camera position, project the fragment
into the depth texture taken from the camera,
and check if it passes the depth test.

Wolfgang Heidrich

Shadow Volumes
Use new buffer: stencil buffer

Just another channel of the framebuffer
Can count how often a pixel is drawn

Algorithm (1):

Generate silhouette polygons for all objects
Polygons starting at silhouette edges of object
Extending away from light source towards infinity
These can be computed in vertex programs

Wolfgang Heidrich

17

Shadow Volumes

Ai{Radeon Shader Demo
File Options

Image by ATI

Wolfgang Heidrich

Shadow Volumes
Algorithm (2):

- Render all original geometry into the depth buffer

— [|.e. do not draw any colors (or only draw ambient
illumination term)

- Render front-facing silhouette polygons while
incrementing the stencil buffer for every rendered
fragment

- Render back-facing silhouette polygons while
decrementing the stencil buffer for every rendered
fragment

+ Draw illuminated geometry where the stencil buffer
is 0, shadow elsewhere

Wolfgang Heidrich

18

Shadow Volumes

=lotx]

File Options

Image by ATI

Wolfgang Heidrich

Shadow Volumes

Discussion:

- Object space method therefore no precision issues

- Lots of large polygons: can be slow
— High geometry count
— Large number of pixels rendered

Wolfgang Heidrich

19

Quiz 2

Later next week:
+ Ray-tracing

Wolfgang Heidrich

