

Sampling & Reconstruction

Wolfgang Heidrich

⊗ Wolfgang Heidrich

Course News

Assignment 3 (project)

Due April 1

Homework

- This week: H6 texture mapping
- Next week: no new homework (focus on quiz prep)

Quiz 2

- Friday, March 13
- Topics:
 - Everything after transformations up to and including this lecture
 - Questions on rendering pipeline as a whole Wolfgang Heidrich

Samples

- Most things in the real world are continuous
- Everything in a computer is discrete
- The process of mapping a continuous function to a discrete one is called sampling
- The process of mapping a discrete function to a continuous one is called reconstruction
- The process of mapping a continuous variable to a discrete one is called quantization
- Rendering an image requires sampling and quantization
- Displaying an image involves reconstruction

Image Sampling and Reconstruction

- Convert continuous image to discrete set of samples
- Display hardware reconstructs samples into continuous image
 - Finite sized source of light for each pixel

Point Sampling an Image Simplest sampling is on a grid Sample depends solely on value at grid points Sampling grid maps continuous to discrete at grid points Wolfgang Heidrich

Sampling Theory

How would we generate a signal like this out of simple building blocks?

Theorem

 Any signal can be represented as an (infinite) sum of sine waves at different frequencies

Wolfgang Heidrich

Sampling Theory in a Nutshell

Terminology

- Wavelength length of repeated sequence on infinite signal
- Frequency 1/wavelength (number of repeated sequences in unit length)

Example – sine wave

- Wavelength = 2π
- Frequency = $1/2\pi$

Sampling Theorem

Continuous signal can be completely recovered from its samples

Iff

- Sampling rate greater than twice highest frequency present in signal
- Claude Shannon

Wolfgang Heidrich

Nyquist Rate

Lower bound on sampling rate

 Twice the highest frequency component in the image's spectrum

Aliasing

Incorrect appearance of high frequencies as low frequencies

To avoid: anti-aliasing

- Supersample
 - Sample at higher frequency
- Low pass filtering
 - Remove high frequency function parts
 - Aka prefiltering, band-limiting

Discussion

Sampling & Reconstruction

- Fundamental issue in graphics, vision, and many other areas of computer science
 - Whenever continuous signals need to be represented in a computer
- Aliasing refers to the problem of reconstruction errors due to frequencies above the Nyquist limit
 - These frequencies show up as erroneous low frequency content

Discussion

Anti-Aliasing Approaches

- Low-pass filtering (before sampling!)
 - Avoids aliasing
 - May not be practical in all settings
 - For images: artifacts around edges?!
- Supersampling
 - General algorithmic approach
 - Hoever: even the higher resolution image has a Nyquist limit!
 - Slow

Wolfgang Heidrich

Coming Up:

Monday

 Programmable GPU architectures (Gordon Wetzstein)

Wednesday

Shadows

Friday

Quiz 2