© Wolfgang Heidrich

- Outtoday

Due March 2

Reading

No new reading this week

Wolfgang Heidrich

Rasterization Fragment Processing

Wolfgang Heidrich

overlap

- To render the correct image, we need to determine
which polygons occlude which

Wolfgang Heidrich

Painter’s Algorithm

Simple: render the polygons from back to front,

“painting over” previous polygons

= @&

Draw cyan, then green, then red

will this work in the general case?

Wolfgang Heidrich

Painter’s Algorithm: Problems

> Intersecting polygons present a problem

Even non-intersecting polygons can form a cycle

with no valid visibility order:

Wolfgang Heidrich

Hidden Surface Removal
Object Space Methods:

Work in 3D before scan conversion
E.qg. Painter’s algorithm
Usually independent of resolution

Important to maintain independence of output
device (screen/printer etc.)

Image Space Methods:

Work on per-pixel/per fragment basis after scan
conversion

Z-Buffer/Depth Buffer
Much faster, but resolution dependent

Wolfgang Heidrich

The Z-Buffer Algorithm

What happens if multiple primitives occupy the
same pixel on the screen?

Which is allowed to paint the pixel?

S A

Wolfgang Heidrich

The Z-Buffer Algorithm

ldea: retain depth after projection transform
Each vertex maintains z coordinate
Relative to eye point
Can do this with canonical viewing volumes

Wolfgang Heidrich

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer
Also called depth buffer
Stores z value at each pixel
At frame beginning, initialize all pixel depths to

When scan converting: interpolate depth (z) across
polygon

Check z-buffer before storing pixel color in
framebuffer and storing depth in z-buffer

don't write pixel if its z value is more distant than
the z value already stored there

Wolfgang Heidrich

¥
for all polygons P {
for all pixels in P {
if (Z_pixel < Depth[i,j]) {
Image[i,j] = C_pixel

Depth[i,]]
}
}

Z_pixel

}

Wolfgang Heidrich

Interg
parameters

- E.g. color

Wolfgang Heidrich

The Z-Buffer Algorithm (mid-70’s)

History:

Object space algorithms were proposed when
memory was expensive

First 512x512 framebuffer was >$50,000!

Radical new approach at the time
The big idea:
— Resolve visibility independently at each pixel

Wolfgang Heidrich

Depth Test Precision

- Reminder: projective transformation maps eye-
space z to generic z-range (NDC)

- Simple example:
(x]\ [1 O O

z|| 10 0 a

01

yi| 10 1 0 Of [y
b.
Yl

1 _0 0 -1
- Thus: a-z +b b

Wolfgang Heidrich

Depth Test Precision

Therefore, depth-buffer essentially stores 1/z,
rather than z!

Issue with integer depth buffers
High precision for near objects
Low precision for far objects

Zxpe

Wolfgang Heidrich

Depth Test Precision

Low precision can lead to depth fighting for far objects

Two different depths in eye space get mapped to
same depth in framebuffer

Which object ‘wins” depends on drawing order and
scan-conversion

Gets worse for larger ratios f»
Rule of thumb: £:n < 1000 for 24 bit depth buffer

With 16 bits cannot discern cm differences in
objects at 1 km distance

Wolfgang Heidrich

Z-Buffer Algorithm Questions

How much memory does the Z-buffer use?

Does the image rendered depend on the drawing
order?

Does the time to render the image depend on the
drawing order?

How does Z-buffer load scale with visible polygons?
with framebuffer resolution?

Wolfgang Heidrich

Z-Buffer Pros

Simplelll
Easy to implement in hardware

Hardware support in all graphics cards today
Polygons can be processed in arbitrary order
Easily handles polygon interpenetration

Wolfgang Heidrich

Z-Buffer Cons
Poor for scenes with high depth complexity

- Need to render all polygons, even if
most are invisible

=

eye

Shared edges are handled inconsistently
 Ordering dependent

Wolfgang Heidrich

Z-Buffer Cons

Requires “lots” of memory
- (e.g. 1280x1024x32 bits)
Requires fast memory
* Read-Modify-Write in inner loop
Hard to simulate transparent polygons

+ We throw away color of polygons behind closest
one

» Works if polygons ordered back-to-front

—Extra work throws away much of the speed
advantage

Wolfgang Heidrich

10

Object Space Algorithms

Determine visibility on object or polygon
level

Using camera coordinates
Resolution independent

Explicitly compute visible portions of polygons
Early in pipeline

After clipping
Requires depth-sorting

Painter’s algorithm
BSP trees

Wolfgang Heidrich

Object Space Visibility Algorithms

- Early visibility algorithms computed the set of visible
polygon fragments directly, then rendered the fragments
to a display:

Wolfgang Heidrich

11

Object Space Visibility Algorithms

What is the minimum worst-case cost of
computi:g the fra?ments for a scene
ygons?

compos
Answer:

o(n?)

of n po

Wolfgang Heidrich

Object Space Visibility Algorithms

So, for about a decade (late 60s to late 70s) there
was intense interest in finding efficient algorithms
for hidden surface removal

We'll talk about one:
— Binary Space Partition (BSP) Trees

Still in use today for ray-tracing, and in
combination with z-buffer

Wolfgang Heidrich

12

Binary Space Partition Trees (1979) -

BSP Tree: partition space with binary tree of
planes

Idea: divide space recursively into half-spaces by
choosing splitting planes that separate objects in
scene

Preprocessing: create binary tree of planes

Runtime: correctly traversing this tree enumerates
objects from back to front

Wolfgang Heidrich

Creating BSP Trees: Objects

®
5y
‘ﬁ%ﬁﬁ

Wolfgang Heidrich

13

Wolfgang Heidrich

Wolfgang Heidrich

14

Wolfgang Heidrich

Wolfgang Heidrich

15

Splitting Objects

No bunnies were harmed in previous
example

But what if a splitting plane passes through
an object?

Split the object; give half to each node
®- ¢
94'p

Wolfgang Heidrich

Traversing BSP Trees
Tree creation independent of viewpoint

Preprocessing step
Tree traversal uses viewpoint

Runtime, happens for many different viewpoints

Each plane divides world into near and far
For given viewpoint, decide which side is near and which is far

- Check which side of plane viewpoint is on independently for
each tree vertex

- Tree traversal differs depending on viewpoint!
Recursive algorithm
- Recurse on far side
- Draw object
- Recurse on near side Wolfgang Heidrich

near = T->right; far = T->left;
renderBSP (far) ;
if (T is a leaf node)
renderObject (T)

renderBSP (near) ;

Wolfgang Heidrich

Wolfgang Heidrich

17

- —

each tree vertex
= not just left or right child!

Wolfgang Heidrich

18

19

21

Wolfgang Heidrich

Wolfgang Heidrich

24

Recurse down the positive half-space

Wolfgang Heidrich

Wolfgang Heidrich

Summary: BSP Trees

Pros:
- Simple, elegant scheme

 Correct version of painter’s algorithm back-to-front
rendering approach

- Still very popular for video games (but getting less
S0)

Cons:
Slow(ish) to construct tree: O(n log n) to split, sort

Splitting increases polygon count: O(n?2) worst-
case

Computationally intense preprocessing stage
restricts algorithm to static scenes Wollgang Heidich

Coming Up:

Wednesday
Blending

Friday / next week

Texture mapping

Wolfgang Heidrich

