

Course News Assignment 2 Due March 2 Homework 4 Out today Reading (this week) Chapter 8 Reading (reading week) Rehearsal: Ch. 2, 3 (except 3.8), 6, 7, 8 New: remainder of Ch. 2, Ch. 12

Line segment:

• (p1,p2)

Trivial cases:

- OC(p1) == 0 && OC(p2) == 0
 - Both points inside window, thus line segment completely visible (trivial accept)
- (OC(p1) & OC(p2))!= 0 (i.e. bitwise "and"!)
 - There is (at least) one boundary for which both points are outside (same flag set in both outcodes)
 - Thus line segment completely outside window (trivial reject)

α-Clipping

- Handling of all the non-trivial cases
- Improvement of earlier algorithms (Cohen/ Sutherland, Cyrus/Beck, Liang/Barsky)
- Define <u>window-edge-coordinates</u> of a point $\mathbf{p} = (x, y)^T$
 - WEC_L(\mathbf{p})= x- x_{min}
 - $WEC_R(\mathbf{p}) = x_{max} x$
 - $WEC_B(\mathbf{p}) = y y_{min}$
 - $WEC_T(\mathbf{p}) = y_{max} y$

Negative if outside!

Wolfgang Heidrich

Line Clipping

α-Clipping

- Line segment defined as: p1+ α(p2-p1)
- Intersection point with one of the borders (say, left):

$$x_1 + \alpha(x_2 - x_1) = x_{min} \Leftrightarrow$$

$$\alpha = \frac{x_{min} - x_1}{x_2 - x_1}$$

$$= \frac{x_{min} - x_1}{(x_2 - x_{min}) - (x_1 - x_{min})}$$

$$= \frac{\text{WEC}_L(x_1)}{\text{WEC}_L(x_1) - \text{WEC}_L(x_2)}$$


```
\alpha-Clipping: algorithm
```

```
alphaClip(p1, p2, window) {

Determine window-edge-coordinates of p1, p2

Determine outcodes OC(p1), OC(p2)

Handle trivial accept and reject
```

 $\alpha 1$ = 0; // line parameter for first point $\alpha 2$ = 1; // line parameter for second point

. . .

Wolfgang Heidrich

Line Clipping

α -Clipping: algorithm (cont.)

```
// now clip point p1 against all edges
if( OC(p1) & LEFT FLAG ) {
```

if $(OC(p1) \& LEFI_FLAG)$ { $\alpha = WEC_L(p1)/(WEC_L(p1) - WEC_L(p2));$ $\alpha 1 = \max(\alpha 1, \alpha);$

Similarly clip p1 against other edges

. . .

}


```
Line Clipping

\alpha-Clipping: algorithm (cont.)

...

// wrap-up

if(\alpha 1 > \alpha 2)

no output;

else

output line from p1+\alpha1(p2-p1) to p1+\alpha2(p2-p1)
} // end of algorithm
```


Line Clipping in 3D

UBC

Approach:

- Clip against parallelpiped in NDC (after perspective transform)
- Means that the clipping volume is always the same!
 - OpenGL: $x_{min} = y_{min} = -1$, $x_{max} = y_{max} = 1$
- Boundary lines become boundary planes
 - But outcodes and WECs still work the same way
 - Additional front and back clipping plane
 - Z_{min} =-1, z_{max} =1 in OpenGL

Non-convex clipping regions

- Problem: arbitrary number of visible line segments
- Different approaches:
 - Break down polygon into convex parts
 - Scan convert for full window, and discard hidden pixels

Wolfgang Heidrich

Polygon Clipping

Objective

- 2D: clip polygon against rectangular window
 - Or general convex polygons
 - Extensions for non-convex or general polygons
- 3D: clip polygon against parallelpiped
 - Left, right, top, bottom, near, far planes

Triangles Scan-Converted with Edge Equations:

- Go over each pixel in bounding rectangle
- Check if pixel is inside/outside of triangle

Wolfgang Heidrich

Triangle Clipping (w/ Edge Equation Scan Conversion)

Note:

- Once we use edge equations, we no longer really have to clip the geometry against window boundary!
- Instead: clip bounding rectangle against window
 - Only evaluate edge equations for pixels inside the window!
- Near/far clipping: when interpolating depth values, detect whether point is closer than near or farther than far
 - If so, don't draw it

General Polygon Clipping

Task:

- Clipping of general polygons
- Convex and concave
- Works with other scan conversion algorithms
 - Independent of edge equations

Wolfgang Heidrich

Polygon Clipping Not just clipping all boundary lines May have to introduce new line segments Worfgang Heidrich

Sutherland/Hodgeman Algorithm

- Inside/outside tests: outcodes
- Intersection of line segment with edge: windowedge coordinates
- Similar to Cohen/Sutherland algorithm for line clipping

Wolfgang Heidrich

Polygon Clipping

Sutherland/Hodgeman Algorithm

- Discussion:
 - Works for concave polygons
 - But generates degenerate cases

Sutherland/Hodgeman Algorithm

- Discussion:
 - Clipping against individual edges independent
 - Great for hardware (pipelining)
 - All vertices required in memory at the same time
 - Not so good, but unavoidable
 - Another reason for using triangles only in hardware rendering

Other Polygon Clipping Algorithms

- Weiler/Aetherton '77:
 - Arbitrary concave polygons with holes both as subject and as object polygon
- Vatti '92:
 - Self intersection allowed as well
- ... many more
 - Improved handling of degenerate cases
 - But not often used in practice due to high complexity

Wolfgang Heidrich

Occlusion

For most interesting scenes, some polygons overlap

 To render the correct image, we need to determine which polygons occlude which

<u>.</u>

Hidden Surface Removal

Object Space Methods:

- Work in 3D before scan conversion
 - E.g. Painter's algorithm
- Usually independent of resolution
 - Important to maintain independence of output device (screen/printer etc.)

Image Space Methods:

- Work on per-pixel/per fragment basis after scan conversion
- Z-Buffer/Depth Buffer
- Much faster, but resolution dependent

Wolfgang Heidrich

The Z-Buffer Algorithm

- What happens if multiple primitives occupy the same pixel on the screen?
- Which is allowed to paint the pixel?

The Z-Buffer Algorithm

Idea: retain depth after projection transform

- Each vertex maintains z coordinate
 - Relative to eye point
- Can do this with canonical viewing volumes

Wolfgang Heidrich

The Z-Buffer Algorithm

Augment color framebuffer with Z-buffer

- Also called depth buffer
- Stores z value at each pixel
- At frame beginning, initialize all pixel depths to ∞
- When scan converting: interpolate depth (z) across polygon
- Check z-buffer before storing pixel color in framebuffer and storing depth in z-buffer
- don't write pixel if its z value is more distant than the z value already stored there

Z-Buffer

Store (r,g,b,z) for each pixel

```
typically 8+8+8+24 bits, can be more
for all i,j {
   Depth[i,j] = MAX_DEPTH
   Image[i,j] = BACKGROUND_COLOUR
}
for all polygons P {
   for all pixels in P {
     if (Z_pixel < Depth[i,j]) {
        Image[i,j] = C_pixel
        Depth[i,j] = Z_pixel
     }
   }
}</pre>
```

Wolfgang Heidrich

Interpolating Z

Edge walking

Just interpolate Z along edges and across spans

Barycentric coordinates

- Interpolate z like other parameters
- E.g. color

The Z-Buffer Algorithm (mid-70's)

History:

- Object space algorithms were proposed when memory was expensive
- First 512x512 framebuffer was >\$50,000!

Radical new approach at the time

- The big idea:
 - Resolve visibility independently at each pixel

Wolfgang Heidrich

Depth Test Precision

- Reminder: projective transformation maps eyespace z to generic z-range (NDC)
- Simple example:

$$T \begin{pmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Thus:

$$z_{NDC} = \frac{a \cdot z_{eye} + b}{z_{eye}} = a + \frac{b}{z_{eye}}$$

Depth Test Precision

- Therefore, depth-buffer essentially stores 1/z, rather than z!
- Issue with integer depth buffers
 - High precision for near objects
 - Low precision for far objects

UBC

Depth Test Precision

- Low precision can lead to depth fighting for far objects
 - Two different depths in eye space get mapped to same depth in framebuffer
 - Which object "wins" depends on drawing order and scan-conversion
- Gets worse for larger ratios f:n
 - Rule of thumb: f: n < 1000 for 24 bit depth buffer
- With 16 bits cannot discern millimeter differences in objects at 1 km distance

Z-Buffer Algorithm Questions

- How much memory does the Z-buffer use?
- Does the image rendered depend on the drawing order?
- Does the time to render the image depend on the drawing order?
- How does Z-buffer load scale with visible polygons?
 with framebuffer resolution?

Wolfgang Heidrich

Z-Buffer Pros

- Simple!!!
- Easy to implement in hardware
 - Hardware support in all graphics cards today
- Polygons can be processed in arbitrary order
- Easily handles polygon interpenetration

Z-Buffer Cons

Requires lots of memory

• (e.g. 1280x1024x32 bits)

Requires fast memory

Read-Modify-Write in inner loop

Hard to simulate transparent polygons

- We throw away color of polygons behind closest one
- · Works if polygons ordered back-to-front
 - —Extra work throws away much of the speed advantage
 Wolfgang Heidrich

Object Space Algorithms

Determine visibility on object or polygon level

Using camera coordinates

Resolution independent

Explicitly compute visible portions of polygons

Early in pipeline

After clipping

Requires depth-sorting

- Painter's algorithm
- BSP trees

Wolfgang Heidrich

Object Space Visibility Algorithms

 Early visibility algorithms computed the set of visible polygon fragments directly, then rendered the fragments to a display:

Object Space Visibility Algorithms

- So, for about a decade (late 60s to late 70s) there
 was intense interest in finding efficient algorithms
 for hidden surface removal
- We'll talk about one:
 - Binary Space Partition (BSP) Trees
 - Still in use today for ray-tracing, and in combination with z-buffer

Binary Space Partition Trees (1979)

BSP Tree: partition space with binary tree of planes

- Idea: divide space recursively into half-spaces by choosing splitting planes that separate objects in scene
- Preprocessing: create binary tree of planes
- Runtime: correctly traversing this tree enumerates objects from back to front

Wolfgang Heidrich

Creating BSP Trees: Objects

Splitting Objects

No bunnies were harmed in previous example

But what if a splitting plane passes through an object?

Split the object; give half to each node

Wolfgang Heidrich

Traversing BSP Trees

Tree creation independent of viewpoint

Preprocessing step

Tree traversal uses viewpoint

Runtime, happens for many different viewpoints

Each plane divides world into near and far

- For given viewpoint, decide which side is near and which is far
 - Check which side of plane viewpoint is on independently for each tree vertex
 - Tree traversal differs depending on viewpoint!
- Recursive algorithm
 - Recurse on far side
 - Draw object
 - Recurse on near side

```
Traversing BSP Trees

renderBSP(BSPtree *T)
   BSPtree *near, *far;
   if (eye on left side of T->plane)
    near = T->left; far = T->right;
   else
    near = T->right; far = T->left;
   renderBSP(far);
   if (T is a leaf node)
    renderObject(T)
   renderBSP(near);
```


BSP Tree Traversal: Polygons

- Split along the plane defined by any polygon from scene
- Classify all polygons into positive or negative halfspace of the plane
 - If a polygon intersects plane, split polygon into two and classify them both
- Recurse down the negative half-space
- Recurse down the positive half-space

Summary: BSP Trees

Pros:

- Simple, elegant scheme
- Correct version of painter's algorithm back-to-front rendering approach
- Still very popular for video games (but getting less so)

Cons:

- Slow(ish) to construct tree: O(n log n) to split, sort
- Splitting increases polygon count: O(n²) worstcase
- Computationally intense preprocessing stage restricts algorithm to static scenes

Coming Up:

After Reading Week

- More hidden surface removal
- Blending
- Texture mapping