© Wolfgang Heidrich

Due March 2

Out today

+ Chapter 8

Wolfgang Heidrich

The Rendering Pipeline

Geometry Processing

Geometry ModelView | | | Perspective| | |
Database Transform. Lighting Transform. Clipping <|
Scan | | ||| Depth | | |[Frame-
Conversion | | TeXturing Test Slendng buffer
Rasterization Fragment Processing
Wolfgang Heidrich

Shading

Input to Scan Conversion:
Vertices of triangles (lines, quadrilaterals...)
Color (per vertex)
Specified with glColor
Or: computed with lighting
World-space normal (per vertex)
Left over from lighting stage

Shading Task:

Determine color of every pixel in the triangle

Wolfgang Heidrich

Shading

How can we assign pixel colors using this
information?

Easiest: flat shading
Whole triangle gets one color (color of 1 vertex)
Better: Gouraud shading
— Linearly interpolate color across triangle
Even better:
~ Linearly interpolate the normal vector
Compute lighting for every pixel

— Note: not supported by rendering pipeline as
discussed so far

Wolfgang Heidrich

UBC

N\

Flat Shading

Simplest approach calculates illumination at a
single point for each polygon

Obviously inaccurate for smooth surfaces

Wolfgang Heidrich

Flat Shading Approximations

If an object really is faceted, is
this accurate?

Wolfgang Heidrich

Flat Shading Approximations

If an object really is faceted, is
this accurate?

no!

G—
For point sources, the direction to light
varies across the facet °

G
For specular reflectance, direction to ’g

eye varies across the facet

Wolfgang Heidrich

Improving Flat Shading

What if evaluate Phong lighting model at
pixel of the polygon?

Better, but result still clearly faceted

For smoother-looking surfaces
we introduce vertex normals at each

vertex
Usually different from facet normal
Used only for shading

Think of as a better approximation of the real surface
that the polygons approximate

Wolfgang Heidrich

Vertex Normals

Vertex normals may be
+ Provided with the model
- Computed from first principles

- Approximated by
averaging the normals
of the facets that
share the vertex

Wolfgang Heidrich

Gouraud Shading Artifacts

often appears dull, chalky

lacks accurate specular component
if included, will be averaged over entire polygon

C, this vertex shading spread
this interior shading missed! over too much area

olfgang Heidrich

Gouraud Shading Artifacts
Mach bands

- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights

Wolfgang Heidrich

Phong Shading

linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
+ Same input as Gouraud shading

* Pro: much smoother results
» Con: considerably more expensive

Not the same as Phong lighting

Common confusion

> Phong lighting: empirical model to calculate illumination at a
point on a surface

Wolfgang Heidrich

Phong Shading
Linearly interpolate the vertex normals

- Compute lighting equations at each pixel

- Can use specular component
#lights

= o+ 3, 1 (071)# K (7 0]
i=1

N, .
remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

Wolfgang Heidrich

Phong Shading Difficulties
Computationally expensive

Per-pixel vector normalization and lighting
computation!

Floating point operations required

Lighting after perspective projection
Messes up the angles between vectors
Have to keep eye-space vectors around

No direct support in standard rendering
pipeline

But can be simulated with texture mapping,
procedural shading hardware (see later)

Wolfgang Heidrich

Shading Artifacts: Silhouettes
Polygonal silhouettes remain

Gouraud Phong

Wolfgang Heidrich

How to Interpolate?
Need to propagate vertex attributes to pixels

Interpolate between vertices:

— Z (depth)

— rgb color components

~ N,,N,,N._ surface normals

— u,v texture coordinates (talk about these later)
Three equivalent ways of viewing this (for triangles)
1. Linear interpolation

2. Barycentric coordinates

3. Plane Equation

Wolfgang Heidrich

1. Linear Interpolation
Interpolate quantity along L and R edges

(as a function of y)
Then interpolate quantity as a function of x

vi
v3 P(x.y)
VL vR
y N
v2

Wolfgang Heidrich

Linear Interpolation

Most common approach, and what OpenGL does
- Perform Phong lighting at the vertices

- Linearly interpolate the resulting colors over faces

— Along edges
— Along scanlines edge: mixof ¢, ¢, | C;
Same as Barycentric Coordinates! @ TS/ 0. .

interior: mix of ¢, ¢2, c3
edge: mix of ¢1, ¢3

Wolfgang Heidrich

2. Barycentric Coordinates

Have seen this before

Barycentric Coordinates: weighted combination of
vertices, with weights summing to 1
P=a'B +B-P, + 7P,

a+p+y=1 B (10,0

O<sa,B,y <1

P, (04,0)

Wolfgang Heidrich

10

=
@
e

H
|
:'i

\'/ ‘)
NS}

Barycentric Coordinates
Convex combination of 3 points
X=0X,+B"X, +Yy°X,
witha+pB+y=1 O=<a,B,y=<1
a, B, and y are called
barycentric coordinates -
3
LBC

Barycentric Coordinates

One way to compute them:
X = 0X, + X, + yx, with

a=AlA &
B=A,lA X,

y=A,/A

X1 Wolfgang Heidrich

11

Barycentric Coordinates

How to compute areas?
Cross products!

e.g:
1
A= =x)x x-x)

X1 Wolfgang Heidrich

3. Plane Equation

Obsepmom Quantities vary linearly across image

Eg:r=Ax+By+C
- r=red channel of the color p3
- Same for g, b, Nx, Ny, Nz, z...

From info at vertices we know:

r,=Ax,+By +C
r,=Ax,+By,+C o1
r,=Ax;+By,+C

= Solve for A, B, C

One-time set-up cost per triangle and interpolated p2
quantity

Wolfgang Heidrich

12

Together with edge equation sce
Barycentric coordinates

Not useful in the current context

But: method of choice for ray-tracing

= Whenever you only need to compute the
value for a single pixel

Wolfgang Heidrich

© Wolfgang Heidrich

13

Determine portion of line inside axis-ligned
parallelpiped (viewing frustum in NDC)

Simple extension to the 2D algorithms

Wolfgang Heidrich

/

‘window

/I

N

Lo X=X max

YV min

Wolfgang Heidrich

14

Line Clipping

Outcodes (Cohen, Sutherland '74)

4 flags encoding position of a point relative to top,
bottom, left, and right boundary

Ed
OC(p1)=0010
OC(p2)=0000
OC(p3)=1001

1010 1000 1001
p3 Y ~Vonax
op]
0010 0000 0001
op2
p yzymin
0110 0100 0101
X=x X=X

max

Wolfgang Heidrich

Line Clipping

Line segment:
(p1,p2)
Trivial cases:

OC(p1)== 0 && OC(p2)==0
Both points inside window, thus line segment

completely visible (trivial accept)

(OC(p1) & OC(p2))!= 0 (i.e. bitwise “and"l)

There is (at least) one boundary for which both
points are outside (same flag set in both

outcodes)

Thus line segment completely outside window

(trivial reject)

Wolfgang Heidrich

15

window

/8
4

y=ymin

X=Xy in X =xmax

Wolfgang Heidrich

Xmin
— WECK(p)=x,, >
= WECS(®)= vy
= WECHD)= Yacy

Negative if outside!

Wolfgang Heidrich

Line Clipping
a-Clipping

Line segment defined as: pl+ a(p2-pl)
Intersection point with one of the borders (say, left):
xl + a(x2 _xl) = xmin =

W=

min

X, — X, / p2
— Xoin — X1 /

(%, = x,,;,) = (X = x,,,,) pl

_ WEC, (x,)
WECL (xl) = WECL (xz) X=X in

o =

Wolfgang Heidrich

Line Clipping

a-Clipping: algorithm

alphaClip(p1, p2, window) {
Determine window-edge-coordinates of p1, p2
Determine outcodes OC(p1l), OC(p2)

Handle trivial accept and reject

al= 0; // line parameter for first point

a2= 1;//line parameter for second point

Wolfgang Heidrich

17

Line Clipping
a-Clipping: algorithm (cont.)
// now clip point p1 against all edges
if(OC(p1) & LEFT FLAG) {
a=WEC (pD)/(WEC,, (pl) - WEC,, (p2));
al=max(al, a),

Simularly clip pl against other edges

Wolfgang Heidrich

Line Clipping
a-Clipping: example for clipping p1

......... (1-al)p1+al p2 (1-al)pi+al p2 a(1-al)pl+al p2
pl \ pl pl
\1\-a2)p1+a2 p2 -\Q-O.Z)p1.+a2 p2 \(ai:-.;uz)pymz p2
TN N/ N
p2 p2 p2
left
Start configuration After clipping to left After clipping to top

Wolfgang Heidrich

18

Similarly clip p1 against other edges

Wolfgang Heidrich

// wrap-up

ol -

e

no output;
else
output line from pl+al(p2-pl) to pl+a2(p2-pl)
} // end of algorithm

Wolfgang Heidrich

19

Line Clipping
Example

(1-a2)p1+a2 p2
.............. D2

1-02)p1+a2 p2
.............. 2

(1-a2)p1+02 p2

z/PZ

pl /'-m-~-(-1-u1)p1+°1 P2 pl
left

Start configuration

After clipping p1

-at)pteat p2 pl

4

-"(.1-q1)p1+a1 p2

After clipping p2

Wolfgang Heidrich

Line Clipping
Another Example
(1~a2)p1+a2 p2...... p2 (Fo2pt+a2p2 (1-a2)p1+a2})2 p2
pLé. il top p17 Lol
(1-a1)p1tal p2 (1-a1)p14al p2 (1-al)pi+al p2
left left left

Start configuration

After clipping p1

After clipping p2

Wolfgang Heidrich

- - - - ‘\,,/
Line Clipping in 3D
Approach:
- Clip against parallelpiped in NDC (after perspective
transform)

Means that the clipping volume is always the samel!
OpenGL: x,,,=Vin= -1, Xp0xs=Vimax= 1
Boundary lines become boundary planes
But outcodes and WECs still work the same way
— Additional front and back clipping plane
= - ..=0,z..=1in OpenGL

Wolfgang Heidrich

Line Clipping
Extensions

Algorithm can be extended to clipping lines against
Arbitrary convex polygons (2D)
Arbitrary convex polytopes (3D)

Wolfgang Heidrich

21

Wolfgang Heidrich

Problem: arbitrary number of visible line segments

— Scan convert for full window, and discard hidden
pixels

]

Wolfgang Heidrich

Polygon Clipping
Objective

2D: clip polygon against rectangular window

— Or general convex polygons

— Extensions for non-convex or general polygons
3D: clip polygon against parallelpiped

Wolfgang Heidrich

Polygon Clipping
Not just clipping all boundary lines

May have to introduce new line segments
//S\ O
{ { \>

~_ /1 I /
V4

Wolfgang Heidrich

23

Polygon Clipping
Classes of Polygons

Triangles

Convex

Concave

Holes and self-intersection

p @4

Wolfgang Heidrich

Polygon Clipping
Sutherland/Hodgeman Algorithm (°74)

Arbitrary convex or concave object polygon

— Restriction to triangles does not simplify things

Convex subject polygon (window)

JZaN
<

e

\

Wolfgang Heidrich

24

Polygon Clipping

Sutherland/Hodgeman Algorithm (’74)
Approach: clip object polygon independently

agwll edges of subject polygon
y

. 1 &

A B B

N

= &

Wolfgang Heidrich

Polygon Clipping

Clipping against one edge:
clipPolygonToEdge(p[n], edge) {
for(1i=0;1<n ;it++) {
1f(p[1] inside edge) {
if(p[i-1] inside edge) // p[-1]= p[n-1]
output p[i];
else {
p= intersect(p[i-1], p[i], edge);
output p, p[i];
3

} else...

Wolfgang Heidrich

1v)/ﬁ[i-l]

pli]

pli]
Output: p[i] Output: p, pl[i]

Wolfgang Heidrich

if(p[i-1] inside edge) {
p= intersect(p[i-1], p[I], edge);
output p;
3
} // end of algorithm

Wolfgang Heidrich

p[i] pli-1]

Output: p Output:nothing

Wolfgang Heidrich

inside | outside

Wolfgang Heidrich

Polygon Clipping
Sutherland/Hodgeman Algorithm

Inside/outside tests: outcodes

Intersection of line segment with edge: window-
edge coordinates

Similar to Cohen/Sutherland algorithm for line
clipping

Wolfgang Heidrich

Polygon Clipping
Sutherland/Hodgeman Algorithm

Discussion:
~ Works for concave polygons
But generates degenerate cases

Wolfgang Heidrich

Polygon Clipping
Sutherland/Hodgeman Algorithm

Discussion:
Clipping against individual edges independent
Great for hardware (pipelining)
All vertices required in memory at the same time
Not so good, but unavoidable

Another reason for using triangles only in
hardware rendering

Wolfgang Heidrich

Polygon Clipping
Sutherland/Hodgeman Algorithm

For Rendering Pipeline:

Re-triangulate resulting polygon
(can be done for every individual clipping edge)

<

Wolfgang Heidrich

Polygon Clipping

Other Polygon Clipping Algorithms
Weiler/Aetherton '77:

Arbitrary concave polygons with holes both as
subject and as object polygon

Vatti '92:
- Selfintersection allowed as well

.. many more
Improved handling of degenerate cases
— But not often used in practice due to high

complexity -
. \J
Coming Up:
Friday

More clipping, hidden surface removal

Wolfgang Heidrich

