© Wolfgang Heidrich

Due March 2

sed in labs next week

+ Chapter 3

Wolfgang Heidrich

The Rendering Pipeline

Geometry Processing

Geometry ModelNiew | | L.l Perspective L |
Database | || Transform. | | “'9MtN9 I~ ¢ onstorm. | | ClPPIng W
Scan L| ||| Depth | | |
Conversion Texturing Test Blending
Rasterization Fragment Processing
Wolfgang Heidrich

Scan Conversion - Rasterization

Convert continuous rendering primitives
into discrete fragments/pixels

Lines

— Midpoint/Bresenham
Triangles

— Flood fill

— Scanline

— Implicit formulation
Interpolation

Wolfgang Heidrich

Scan Conversion - Lines

v
7//
V.
//
///
/]
f//
Wolfgang Heidrich
Scan Conversion - Lines
¥
7//
,/
/]
]
//
V
//

Wolfgang Heidrich

Scan Conversion - Lines
First Attempt:

Line (s,e) given in device coordinates

Create the thinnest line that connects start point
and end point without gap

Assumptions for now:
Start point to the left of end point: xs< xe

Slope of the line between 0 and 1 (l.e. elevation
between 0 and 45 degrees:

Osye—ys
Xe — X§

<1

Wolfgang Heidrich

Scan Conversion of Lines -
Digital Differential Analyzer

First Attempt:
dda(float xs, ys, xe, ye) {

// assume xs < xe, and slope m between 0 and 1
float m= (ye-ys)/(xe-xs),
float y=round(ys);
for(int x= round(xs) ; x<=xe ; x++) {
drawPixel(x, round(y));
y=ytm;

Wolfgang Heidrich

Scan Conversion of Lines
DDA:

Wolfgang Heidrich

Scan Conversion of Lines
Midpoint Algorithm

Moving horizontally along x direction

Draw at current y value, or move up vertically toy+1?

Check if midpoint between two possible pixel centers abov
below line

Candidates

Top pixel: (x+1,y+1) y
Bottom pixel: (x+1,y)

Midpoint: (x+1, y+.5)

Check if midpoint above or below line

Below: top pixel

Above: bottom pixel

Key idea behind Bresenham Alg.

Wolfgang Heidrich

Scan Conversion of Lines

Idea: decision variable
dda(float xs, ys, xe, ye) {

float d= 0.0;

float m= (ye-ys)/(xe-xs),

int y= round(ys),

for(int x= round(xs) ; x<=xe ; x++) {
drawPixel(X,y);
d= d+m;
if(d>=0.5) { d=d-1.0, y++; }

} Wolfgang Heidrich

Scan Conversion of Lines ==
Bresenham Algorithm ('63)

Use decision variable to generate purely integer
algorithm

Explicit line equation:
y =M(x—xs)+ys
(x, —x,)

Implicit version:
D=y
L(xay)_ (x xs) (y ys)_o
(x, = x,)
In particular for specific X, y, we have
L(x,y)>0 if (x,y) below the line, and
L(x,y)<0 if (x,y) above the line

Wolfgang Heidrich

Scan Conversion of Lines ==
Bresenham Algorithm

Decision variable: after drawing point (x,y) decide
whether to draw

(x+1,y): case E (for “east’)
(x+1,y+1): case NE (for “north-east’)
Check whether (x+1,y+1/2) is above or below line

d=L(x+1,y+%)

Point above line if and only if d<0

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
Problem: how to update d7?
Case E (point above line, d<=10)
X=Xx+1;
d= L(x+2, y+1/2)= d+ (y,-y.)/(x,~x,)
Case NE (point below line, d> 0)
X=x+1; y=y+1;
d= L(x+2, y+3/2)= d+ (y,y,)/(x,=x,) -1
Initialization:
d=L(x,t1, y,+1/2)= (v,) (x,x,) —1/2

Wolfgang Heidrich

Scan Conversion of Lines

Bresenham Algorithm
This is still floating point
But: only sign of d matters
Thus: can multiply everything by 2(x.-x,)

Wolfgang Heidrich

Scan Conversion of Lines
Bresenham Algorithm

Bresenham(int xs, ys, xe, ye) {
it y=ys;
incrE= 2(ye - ys);
incrNE= 2((ye - ys) — (xe-xs));
for(int x= xs ; X<=xe ; X++) {
drawPixel(X,y);
1f(d<=0) d+=1incrE;
else { d+=1ncINE; y++; }

Wolfgang Heidrich

- - \7
Scan Conversion of Lines
Discussion
Bresenham sets same pixels as DDA
Intensity of line varies with its angle!
LBC
==
7

Scan Conversion of Lines

Discussion
Bresenham
Good for hardware implementations (integer!)
DDA
May be faster for software (depends on system)!
Floating point ops higher parallelized (pipelined)
E.g. RISC CPUs from MIPS, SUN
No if statements in inner loop
More efficient use of processor pipelining

Wolfgang Heidrich

NS
Scan Conversion of Polygons b

o (o] o (o] o (o] o (o]
o) o) o) o) o) /o/? o)
o (o] (o] /O/ /O (o] / (o] (o]
o)/ (] (o] (] (o] (o] (o]
o (] (o] (o] ?/ (o] (o]
o (o] (o] (o] (o] /) (o] (o]
o (o] (o] (o] (0] (o] (o] (o]
(@] (o] (@] (o] (@] (o] (@] (o]

UBC|

Y/

Scan Conversion of Polygons

One possible scan conversion

o O o O o O o O

ik
1B

[e]

o o [e] o (7/ o O
\ /é
[e]

o O o O

ooo/o/

o\ o

(¢] o (¢] o (¢] o (¢] o

Wolfgang Heidrich

10

Scan Conversion of Polygons
A GeneralAlgorithm

Intersect each scanline with all edges
Sort intersections in x

Calculate parity to determine in/out
Fill the ‘in’ pixels p

Wolfgang Heidrich

Scan Conversion of Polygons

Works for arbitrary polygons
Efficiency improvement:
Exploit row-to-row coherence using “edge table”

Wolfgang Heidrich

11

L and R edges on tra

Wolfgang Heidrich

Wolfgang Heidrich

Edge Walking Triangles b

Split triangles into two regions
with continuous left and right edges

1
scanTrapezoid(X3, X, V3, V,——, —)

1
my; - My

. 11
scanTrapezoid(x, X, V>, y3,m—, .
12

B

Wolfgang Heidrich

Edge Walking Triangles
Issues
Many applications have small triangles
Setup cost is non-trivial

Clipping triangles produces non-triangles

This can be avoided through re-triangulation, as
discussed

Wolfgang Heidrich

tion

Modern Raster

Edge Equations
Define a triangle as follows

(7

2\

‘

!
I
X
X
X
X
X
X
X

X

SARB AL EI

(/

S AL SR A S

Wolfgang Heidrich

Using Edge Equations

Usage

ing rectangle

bound
de/outside of tr

ixel in
ins
fe

Go over each p

Check

langle

Insi
e

IS
o

f pixel i
n

=
i
h-]
@
T
©
2
5
S
£
2

tions -

equa

ge

X

Sig

14

Computing Edge Equations

Implicit equation of a triangle edge:

L(x,y)=%%ﬁ<x—xs>—(y—ys>=o

(see Bresenham algorithm)

L(x,y) positive on one side of edge, negative on the

other

Question:
What happens for vertical lines?

Wolfgang Heidrich

Edge Equations
Multiply with denominator

L(x,y)=(,-y)&x-x)-(y-y)(x,-x)=0

Avoids singularity
Works with vertical lines

What about the sign?

Which side is in, which is out?

Wolfgang Heidrich

15

Edge Equations
Determining the sign

Which side is “in” and which is “out” depends on
order of start/end vertices. ..

Convention: specify vertices in counter-clockwise

order
p3
p2
\> p4
pl
pS
pS Wolfgang Heidrich
Edge Equations

Counter-Clockwise Triangles

The equation L(x,y) as specified above is negative
Inside, positive outside

Flip sign:

Lx,y)==(y,-y)x=x)+(-y)(x,-x,)=0

Clockwise triangles
Use original formula

Lx,y)=(Qy,-y)x-x)-(y-y)x,-x)=0

Wolfgang Heidrich

Discussion of Polygon Scan =
Conversion Algorithms
On old hardware:

Use first scan-conversion algorithm
Scan-convert edges, then fill in scanlines

Compute interpolated values by interpolating
along edges, then scanlines

Requires clipping of polygons against viewing
volume

Faster if you have a few, large polygons
Possibly faster in software

Wolfgang Heidrich

Discussion of Polygon Scan ==
Conversion Algorithms '

Modern GPUs:
Use edge equations
And plane equations for attribute interpolation
No clipping of primitives required
Faster with many small triangles

Additional advantage:
Can control the order in which pixels are processed
Allows for more memory-coherent traversal orders

E.qg. tiles or space-filling curve rather than
scanlines Woltgang Heidrich

17

Triangle Rasterization Issues
(Independent of Algorithm)

Exactly which pixels should be lit?
- A: Those pixels inside the triangle edge (of course)
But what about pixels exactly on the edge?
 Draw them: order of triangles matters (it shouldn't)
» Don't draw them: gaps possible between triangles
We need a consistent (if arbitrary) rule

- Example: draw pixels on left or top edge, but not on
right or bottom edge

Wolfgang Heidrich

Triangle Rasterization Issues
Shared Edge Ordering

= =

o\
o\

Wolfgang Heidrich

18

Q0O
Q0
000

Q
 J
O

@)
@)

)

@)

@)

@)
R) a SEQ0)
OpOOOO
00000000
0]0]0]0]0[0]0]0]0]0)

4

®/
ODOCHO
AOCAOD
OOOOOO0
oleJelelelele)

O
O
O
O

Q00
020
0O
00

PO 06
DG 00
DO 00|
DO 00

Wolfgang Heidrich

© Wolfgang Heidrich

Interpolation During
Scan Conversion

Need to propagate vertex attributes to pixels

Interpolate between vertices:

— Z (depth)

— rgb color components

- N.,N,,N. surface normals

— u,v texture coordinates (talk about these later)
Three equivalent ways of viewing this (for triangles)
1. Bilinear interpolation
2. Barycentric coordinates
3. Plane Equation

Wolfgang Heidrich

1. Bilinear Interpolation

We've seen this before:

Interpolate quantity along LH and RH edges,
as a function of y

Then interpolate,quantity as a function of x

v3 P(x.,y)
VL vR
y “
v2

Wolfgang Heidrich

21

2. Barycentric Coordinates
This too:

Barycentric Coordinates: weighted combination of
vertices
P=a-B + [P + 7P

a+p+y=1 B (1,0,0)
O<a,B,y <1

P,

) (0.1,0)

Wolfgang Heidrich

3. Plane Equation
Observatiop: Quantities vary linearly across image
plane

Eg:r=Ax+By+C
r=red channel of the color p3
- Same for g, b, Nx, Ny, Nz, z...
From info at vertices we know:

i, =Ax,+By +C
r,=Ax,+By,+C p1
r,=Ax;+ By, +C

Solve for A, B, C p2
- One-tifne set-up cost per triangle and interpolated

. Wolfgang Heidrich

TRV ¥

Flat Shading

Simplest approach calculates illumination at a
single point for each polygon

Obviously inaccurate for smooth surfaces

Wolfgang Heidrich

Flat Shading Approximations

If an object really is faceted, is
this accurate?

Wolfgang Heidrich

23

Flat Shading Approximations

If an object really is faceted, is
this accurate?

no!

s
» For point sources, the direction to light
varies across the facet o
—

- For specular reflectance, direction to
eye varies across the facet

Wolfgang Heidrich

Improving Flat Shading

What if evaluate Phong lighting model at
pixel of the polygon?

Better, but result still clearly faceted

For smoother-looking surfaces
we introduce vertex normals at each
vertex \

Usually different from facet normal

Used only for shading
Think of as a better approximation of the real surface
that the polygons approximate

Wolfgang Heidrich

24

Vertex Normals
Vertex normals may be

* Provided with the model
Computed from first principles

Approximated by
averaging the normals
of the facets that
share the vertex

Wolfgang Heidrich

Gouraud Shading

Most common approach, and what OpenGL does
- Perform Phong lighting at the vertices

- Linearly interpolate the resulting colors over faces

— Along edges
— Along scanlines edge: mixof ¢;, ¢, C,
Same as Barycentric Coordinates! @ TS 4l ...

interior: mix of ¢1, ¢2, ¢3
edge: mix of ¢7, ¢3

Wolfgang Heidrich

UBC

2
N

Barycentric Coordinates
Convex combination of 3 points
X=0X,+B"X, +Yy°X,
witha+pB+y=1 O=<a,B,y=<1
a, B, and y are called
barycentric coordinates -
3
KB
U

Barycentric Coordinates

One way to compute them:

X3

X = 0X, + X, + yx, with
oa=ATA
p=A,/A
X4 y=A,/A

Wolfgang Heidrich

Gouraud Shading Artifacts

often appears dull, chalky
lacks accurate specular component

if included, will be averaged over entire polygon

C, this vertex shading spread

this interior shading missed! over too much area

olfgang Heidrich

Gouraud Shading Artifacts
Mach bands

- Eye enhances discontinuity in first derivative
- Very disturbing, especially for highlights

Wolfgang Heidrich

27

Phong Shading

linearly interpolating surface normal across the facet,
applying Phong lighting model at every pixel
+ Same input as Gouraud shading

* Pro: much smoother results
» Con: considerably more expensive

Not the same as Phong lighting

Common confusion

> Phong lighting: empirical model to calculate illumination at a
point on a surface

Wolfgang Heidrich

Phong Shading
Linearly interpolate the vertex normals

- Compute lighting equations at each pixel

- Can use specular component
#lights

= o+ 3, 1 (071)# K (7 0]
i=1

N, .
remember: normals used in

diffuse and specular terms

discontinuity in normal’s rate of
change harder to detect

Wolfgang Heidrich

Phong Shading Difficulties
Computationally expensive

Per-pixel vector normalization and lighting
computation!

Floating point operations required
Lighting after perspective projection

Messes up the angles between vectors

Have to keep eye-space vectors around

No direct support in hardware

But can be simulated with texture mapping

Wolfgang Heidrich

Shading Artifacts: Silhouettes
Polygonal silhouettes remain

Gouraud Phong

Wolfgang Heidrich

Scan conversion / shading

Wolfgang Heidrich

