

Transformations of Normal Vectors Intro to Lighting

Wolfgang Heidrich

Wolfgang Heidrich

Course News

Assignment 1

Due February 2 (next Monday!)

Homework 2

Discussed in labs this week

No new homework for this week

Focus on quiz & assignment

Quiz 1

- Wed, Jan 28. Duration: 40 minutes
- Topic: affine and perspective transformations

Course News (cont.)

Reading for Quiz (new book version):

- Math prereq: Chapter 2.1-2.4, 5
- Intro: Chapter 1
- Affine transformations: Ch. 6 (was: Ch. 5, old book)
- Perspective: Ch 7 (was: Ch. 6, old book)

Normals & Affine Transformations

Question:

If we transform some geometry with an affine transformation, how does that affect the normal vector?

Consider

- Rotation
- Translation
- Scaling
- Shear

Wolfgang Heidrich

Normals & Affine Transformations

Want:

 Representation for normals that allows us to easily describe how they change under affine transformation

Why?

 Normal vectors will be of special interest when we talk about lighting (next week)

Homogeneous Planes And Normals

Planes in Cartesian Coordinates:

$$\{(x, y, z)^T \mid n_x x + n_y y + n_z z + d = 0\}$$

- n_x , n_y , n_z , and d are the parameters of the plane (normal and distance from origin)
- d is positive
- n point to half-space containing origin

Planes in Homogeneous Coordinates:

$$\{[x,y,z,1]^T \mid n_x x + n_y y + n_z z + d \cdot 1 = 0\}$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Planes in homogeneous coordinates are represented as <u>row vectors</u>

- $E=[n_x, n_y, n_z, d]$
- Condition that a point $[x, y, z, w]^T$ is located in E

$$\begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \in E = [n_x, n_y, n_z, d] \Leftrightarrow [n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0$$

Homogeneous Planes And Normals

Transformations of planes

$$\begin{bmatrix} n_x, n_y, n_z, d \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0 \quad \Leftrightarrow T([n_x, n_y, n_z, d]) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}) = 0$$

Wolfgang Heidrich

Homogeneous Planes And Normals

Transformations of planes

$$[n_x, n_y, n_z, d] \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = 0 \quad \Leftrightarrow ([n_x, n_y, n_z, d] \cdot \mathbf{A}^{-1}) \cdot (\mathbf{A} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}) = 0$$

- Works for $T([n_x, n_y, n_z, d]) = [n_x, n_y, n_z, d] \mathbf{A}^{-1}$
- Thus: planes have to be transformed by the *inverse* of the affine transformation (multiplied from left as a row vector)!

Homogeneous Planes And Normals

Homogeneous Normals

- The plane definition also contains its normal
- Normal written as a vector $[n_x, n_y, n_z, 0]^T$

$$\begin{pmatrix} \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix} = 0 \Leftrightarrow ((\mathbf{A}^{-T} \cdot \begin{bmatrix} n_x \\ n_y \\ n_z \\ 0 \end{bmatrix}) \cdot (\mathbf{A} \cdot \begin{bmatrix} v_x \\ v_y \\ v_z \\ 0 \end{bmatrix})) = 0$$

 Thus: the normal to any surface has to be transformed by the inverse transpose of the affine transformation (multiplied from the right as a column vector)!

Wolfgang Heidric

Transforming Homogeneous Normals

Inverse Transpose of

- Rotation by α
 - Rotation by α
- Scale by s
 - Scale by 1/s
- Translation by t
 - Identity matrix!
- Shear by a along x axis
 - Shear by -a along y axis

Lighting

Goal

- Model the interaction of light with surfaces to render realistic images
- Contributing Factors
- Light sources
 - Shape and color
- Surface materials
 - How surfaces reflect light

Materials

Analyzing surface reflectance

- Illuminate surface point with a ray of light from different directions
- Observe how much light is reflected in all possible directions

Does this tell us anything about general lighting conditions?

Wolfgang Heidrich

Materials

Light is linear

- If two rays illuminate the surface point the result is just the sum of the individual reflections for each ray
- For N directions the reflection is the sum of the individual N reflections
- For light arriving from a continuum of directions, the reflection is the integral over the reflections caused by the individual directions
 - More on this when we talk about global illumination at the end of the term

Experiment

Goal:

Visualize reflected light distribution for a given illuminating ray

Physical setup:

- Laser illumination
- Water tank with fluorescent dye
 - Makes laser light visible as it travels through "empty" space

BRDF

Model for all these effects:

- Bi-directional
 - i.e. dependent on 2 directions: incident, exitant
- Reflectance
 - A model for surface reflection (not transmission)
- Distribution
 - Light is distributed over different exitant directions
- Function

Limitations of the BRDF Model

BRDFs cannot describe

- Light of one wavelength that gets absorbed and reemitted at a different wavelength
 - (fluorescence)
- Light that gets absorbed and emitted much later
 - (phosphorescence)
- Light that penetrates the object surface, scatters in the interior of the object, and exits at a different point form where it entered
 - (subsurface scattering)

Wolfgang Heidrich

Materials

Practical Considerations

- In practice, we often simplify the BRDF model further
- Derive specific formulas that describe different reflectance behaviors
 - E.g. diffuse, glossy, specular
- Computational efficiency is also a concern

