
CPSC 314

Assignment 2

Due Tuesday March 7, 2006, 11:59pm

Answer the questions in the spaces provided on the question sheets. If you
run out of space for an answer, use separate pages and staple them to your

assignment.

Name:

Student Number:

Question 1 / 4
Question 2 / 3
Question 3 / 10
Question 4 / 3
Question 5 / 4
Question 6 / 34
TOTAL / 58

1



CPSC 314 Assignment 2

1. (4 points) Perspective View Volumes

Using a side view and a top view, sketch the perspective view volume that is defined by
the following frustum parameters:
left = −1, right = 1, bot = −0.5, top = 0.5, near = 2, far = 100.
Also answer the following three questions. In what coordinate system is the viewing
frustum defined ? What is the horizontal and vertical field of view, as measured in
degrees? What should the aspect ratio (width/height) of the final on-screen window be
so that the rendered world will appear undistorted?

2. (3 points) General Scan Conversion

Arbitrary polygons are often scan converted by intersecting each scanline with all polygon
edges, sorting the intersection points, and then using the parity of the intersection count
in order to determine which regions to fill. For the following non-simple polygon, indicate
which regions the parity-based scan conversion would fill in by shading them.
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3. Scan Conversion and Interpolation

The figure below shows a triangle in device coordinates, with vertices
P1(100, 20), P2(200, 100), P3(150, 220)

and a point P (140, 160) inside the triangle. A set of values V (z, s, t) that are associated
with each vertex and are to be interpolated across the triangle are

V1(1.5, 0.2, 0), V2(1, 0.7, 0), V3(1.2, 0.7, 0.8).
As shown below, (s, t) are the texture coordinates, which indicate what parts of the
texture map should be mapped onto the triangle.

(a) (1 point) By sketching on the brick texture map, indicate which portion of the brick
texture will get mapped to the triangle and which point in the texture map will be
used to colour point P . By sketching on the final on-screen triangle, indicate how
the brick pattern will appear on the on-screen triangle.

(b) (3 points) Give the implicit plane equation for the given triangle. I.e., Ax + By +
Cz + D = 0. Compute the value of z for point P using your plane equation. Show
your work.
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(c) (6 points) Compute the barycentric coordinates for point P . Compute z and s, t
for point P using the Barycentric coordinates.

4. (3 points) Backface Culling

The edges shown below represent faces forming a closed solid. Which faces would be
removed by backface culling? Show your work.

Page 4 of 7



CPSC 314 Assignment 2

5. BSP Visibility

(a) (2 points) The edges in the scene above represent 3D polygons in an environment
which consists of several rooms and several characters (Maya, Caleb, and Terri). In
the space to the right of the figure, draw the BSP tree that is constructed for the
scene by inserting the polygons in alphabetical order into the tree. Assume that
the letter that labels each polygon sits in the ’+’ half space of the polygon. Place
the ’+’ half-spaces on the right side of your tree. Add the characters into your BSP
tree after having added all the other polygons. If two polygons are co-planar, i.e.,
i and k, you can have the polygon that is inserted later into the tree, i.e., k, share
the the node for the earlier polygon in the BSP tree, i.e., i.

(b) (2 points) Give the back-to-front ordering that is produced for the given eye view-
point. Show your work.
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6. Implementing the Graphics Pipeline

You may work on this question in pairs. The theory portion of the assignment must still
be completed individually.

In this question, you will be implementing your own version of the geometric transfor-
mations involved in the graphics pipeline, as well as implementing the scan-conversion
of smoothly-shaded and texture-mapped polygons. Use the template code given online
(follow the assignment 2 links) as a starting point for your code. You will not be using
any OpenGL functions – all image pixels can be set using the SetPixel(x,y,r,g,b) function
call. The functions you will be implementing are mostly replacements for the equivalent
OpenGL functions. For example, myBegin() can be thought of as a replacement for
glBegin().

The file libMath.cpp provides many basic math functions, such as cross-products and
matrix-vector multiplications. See libMath.h for a list of the available functions. The
file libImage.cpp provides the function getTexel(image, u, v, r, g, b), which you
can use to get back the RGB colour of point (u, v), u, v ∈ [0, 1] in the image that serves
as the current texture map.

The following is a suggested order for implementing and testing your code. After com-
pleting each part, ensure that the prior parts still work. The markers will be testing your
code by running scenarios A through H without restarting your program. You should
only make changes to the file mygl.cpp. A reference solution Linux executable myglref

is provided for comparison.

(a) (6 points) Implement myBegin(), myVertex(), and myEnd() functions.

You will be testing these functions using “scenario A”, which uses these functions
to set a few points on the screen. The template code runs scenario A when ’a’ is
typed on the keyboard.

You will find it useful to implement a vertex data structure and create an array of
these to hold all required information about vertices. In order to make things simple,
you may assume that there are never more than 10 vertices specified between a
glBegin() and a glEnd(). Implement myVertex() so that it stores the untransformed
coordinates as well as the current colour. In your myBegin() function, you will
need to remember the current type of primitive being drawn. Your code only needs
to handle GL POINTS and GL TRIANGLES. Your myEnd() function should call
other functions of your own creation to transform all the points in the vertex list
to viewport coordinates and then to draw them as points for the GL POINTS
mode. Test your code with scenario A. This sets the ModelView and Projection
matrices to be identity matrices, and so obj coordinates will effectively be the same
normalized-device coordinates.

(b) (5 points) Implement triangle scan conversion using solid shading and no Z-buffer.
Use the color assigned to the first vertex as being the color used for the triangle.
Begin by computing the bounding box and making sure that this scan-converts
correctly. Then make use of the implicit line equations of the triangle to only set
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those pixels which are interior to the triangle. Note that the bounding box should
be correctly clipped to the window before scan conversion. Test this with scenario
B.

(c) (4 points) Implement smooth shading by linearly interpolating the colours for each
pixel from the colours given for the vertices. Do this by computing barycentric
coordinates for each rendered pixel. Test this with Scenario C.

(d) (3 points) Implement myTranslate(), myRotate(), and myScale() functions. Test
this with Scenario D.

(e) (4 points) Implement the myLookAt() and myFrustum() functions, which will alter
the ModelView and Projection matrices, respectively. Test this with Scenario E.

(f) (4 points) Implement a Z-buffer by interpolating Z-values from the vertices and
by doing a Z-buffer test before setting each pixel. Test this with Scenario F. Note
that a Z-buffer has already been declared for you in the template code. Use the
init zbuf() function to initialize it — this function is called for you everytime a
redraw is started.

(g) (4 points) Implement texture mapping by doing scan-converting the texture coor-
dinates. Note that the perspective-correct scan-conversion of texture coordinates
is slightly more complex than simply using the barycentric coordinates to produce
a weighted combination of the vertex texture coordinates. When the PCTexMap

boolean flag is true then perspective-correct texture coordinate interpolation should
be applied. Otherwise, linear texture coordinate interpolation should be applied.
Test this with Scenario G.

(h) (4 points) Model and render a small-but-interesting scene with your rendering sys-
tem, such as a stack of texture-mapped cubes, or a simple room with texture-
mapped walls. Test this as Scenario H. Use animation and your own texture images
if you like. Texture images should be in the PPM format.

Hand-in Instructions

You do not have to hand in any printed code. Create a README.txt file that includes
your name, student number, and login ID for yourself (and for your partner), and any
information you would like to pass on the marker.

Create a folder called ’assn2’ under your cs314 directory and put all the source files,
your makefile, and your README.txt file there. Also include any images that are used
as texture maps. Do not use further sub-directories.

The assignment should be handed in with the exact command:

handin cs314 assn2
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